The ontogeny of sexual dimorphism in the cranium of Bornean orang-utans (Pongo pygmaeus pygmaeus) as detected by principal-components analysis

1990 ◽  
Vol 11 (6) ◽  
pp. 517-539 ◽  
Author(s):  
Thomas J. Masterson ◽  
Walter Leutenegger
2016 ◽  
Vol 32 (5) ◽  
pp. 441-448 ◽  
Author(s):  
Claire Waldock ◽  
Nick Milne ◽  
Jonas Rubenson ◽  
Cyril Jon Donnelly

This study attempts to apply geometric morphometric techniques for the analysis of 3D kinematic marker-based gait data. As a test, we attempted to identify sexual dimorphism during the stance phase of the gait cycle. Two techniques were used to try to identify differences in the way males and females walk without the results being affected by individual differences in body shape and size. Twenty-eight kinematic markers were placed on the torso and legs of 6 male and 8 female subjects, and the 3D time varying coordinates of the kinematic markers were recorded. The gait cycle trials were time-normalized to 61 frames representing the stance phase of gait, and the change in the shape of the configuration of kinematic markers was analyzed using principal components analysis to produce ‘gait signatures’ that characterize the kinematics of each individual. The variation in the gait signatures was analyzed with a further principal components analysis. These methods were able to detect significant sexual dimorphism even after the effects of sexual body shape and size differences were factored out. We discuss insights gained from performing this study which may be of value to others attempting to apply geometric morphometric methods to motion analysis.


1980 ◽  
Vol 19 (04) ◽  
pp. 205-209
Author(s):  
L. A. Abbott ◽  
J. B. Mitton

Data taken from the blood of 262 patients diagnosed for malabsorption, elective cholecystectomy, acute cholecystitis, infectious hepatitis, liver cirrhosis, or chronic renal disease were analyzed with three numerical taxonomy (NT) methods : cluster analysis, principal components analysis, and discriminant function analysis. Principal components analysis revealed discrete clusters of patients suffering from chronic renal disease, liver cirrhosis, and infectious hepatitis, which could be displayed by NT clustering as well as by plotting, but other disease groups were poorly defined. Sharper resolution of the same disease groups was attained by discriminant function analysis.


2020 ◽  
Vol 6 (2) ◽  
pp. 151-183
Author(s):  
Diana B. Archangeli ◽  
Jonathan Yip

AbstractBased on impressionistic and acoustic data, Assamese is described as having a phonological tongue root harmony system, with blocking by certain phonological configurations and over-application in certain morphological contexts. This study explores physical properties of the patterns using ultrasonic imaging to determine whether the impressionistic descriptions match what speakers actually do. Principal components analysis (PCA) determines that most participants produce a contrast in tongue root position in the appropriate contexts, though there is less of an impact on tongue root with greater distance from the triggering vowel. Analysis uses the root mean squared distance (RMSD) calculation to determine whether both blocking and over-application take effect. The blocking results conform to the impressionistic descriptions. With over-application, [e] and [o] are expected; while some speakers clearly produce these vowels, others articulate a vowel that is indeterminant between the expected [e]/[o] and an unexpected [ɛ]/[ɔ]. No speaker consistently showed the expected tongue root position in all contexts, and some speakers appeared to have lost the contrast entirely, yet all are considered to be speakers of the same dialect of Assamese. Whether this (apparent) loss is a consequence of crude research methodologies or accurately reflects what is happening within the language community remains an open question.


Sign in / Sign up

Export Citation Format

Share Document