gait cycle
Recently Published Documents


TOTAL DOCUMENTS

655
(FIVE YEARS 258)

H-INDEX

40
(FIVE YEARS 6)

Author(s):  
Mehmet Iscan ◽  
Cuneyt Yilmaz ◽  
Berkem Vural ◽  
Huseyin Eken

Abstract The most common human locomotion problems such as quadriceps weakness, knee osteoarthritis can be healed up by using exoskeleton mechanisms with proper control systems. However, these kinds of abnormalities cannot be easily modeled in terms of engineering perspectives due to a lack of adequate data or unknown dynamics. Also, nature always seeks minimum energy as well as biology which means that the unknown dynamics can be built by using this phenomenon. In this study, a new system dynamic model had been involved in designing a simple single-legged exoskeleton robot mechanism and its control system to assist partially disabled individuals to improve their quality of locomotion. To determine the specific features of the human gait disorders to interpret their nature in the computer-aided simulation environment, knee osteoarthritis and quadriceps weakness, which are the common types of such problems, have been chosen as the main interests for this study. By using the lower limb model with anthropometric data, the simulations of disorders have been realized on MATLAB Simscape environment which enables us to model the entire exoskeleton system with the 3D parts of the human body. A model of a leg with the disorder was able to be obtained with the utilization of feedback linearization which is one of the examples of minimum principles in the control theory. A proper gait cycle is achieved with the exoskeleton application and separately for the leg, with approximately 10 deg deviation from the natural property in knee flexion. Finally, it can be seen that the system conversion into such problematic cases with or without an exoskeleton system is accomplished.


2022 ◽  
Vol 1 (2) ◽  
pp. 59-64
Author(s):  
Alfiana Fitri Istiqomah ◽  
Rifky Ismail ◽  
Deni Fajar Fitriyana ◽  
Sulistyo Sulistyo ◽  
Akmal Putra Fardinansyah ◽  
...  

ABSTRACT. Disability issue has increased in recent years due to the high number of accidents and vascular disease. Loss of limb function for people with amputations often results in an abnormal gait. Energy Storage And Return (ESAR) foot prostheses provide an alternative to help improve gait and minimize metabolic energy expenditure during the walking phase of amputees. This study used 3 designs with models from the Catia V5 Software. The finite element method analysis used Ansys Workbench 18.1 software to evaluate the three designs with a loading of 1.2 times the user's body weight with a maximum weight of 70 kg in normal walking activities. The simulated material is carbon fiber prepreg which has tensile strength, Young's modulus, Poisson ratio, and density of 513.72 MPa, 77.71 GPa, 0.14, and 1.37 g/cm3. The decision-making matrix method is used to determine the best foot prosthesis design according to predetermined criteria. The highest value in the decision-making matrix is 76 in Design 3. The chosen design (Design 3) after gait cycle analysis has a maximum von Mises stress value of 76.956 MPa and the safety factor value for each gait cycle heel strike loading model is 1.0762; foot flat 3.2509; toe-off 6.6263.


2022 ◽  
Vol 1 (2) ◽  
pp. 65-72
Author(s):  
Ade Reza Ismawan ◽  
Rifky Ismail ◽  
Tony Prahasto ◽  
Mochammad Ariyanto ◽  
Budi Setiyana

Transtibial and transfemoral amputations are the most common amputations in the world, loss of lower extremity result in impaired function extremities and also body balance. A prosthesis is a medical device designed to replace a specific body part to restore function to a body part lost due to an accident or disease. Most doctors strongly recommend the use of a prosthesis so that patients can return to normal activities after undergoing an amputation. Besides functioning to support beauty, the use of prostheses is also to restore the quality of life of prosthetic users, the issue of metabolic energy consumption when walking is also very important in designing transtibial bionic prosthesis because it involves the comfort of the user transtibial prosthesis. Most of the existing transtibial prosthesis products in Indonesia are conventional passive transtibial foot products, and passive prosthesis users show a limp or asymmetrical gait pattern so that conventional passive prosthesis users experience discomfort when walking in the form of pain in the amputated leg and normal foot, which can cause secondary musculoskeletal injuries such as joint disorders. Passive prostheses cannot generate propulsive force during push-off phase (terminal stance and preswing) of the human gait cycle. The use of passive prostheses can also consume 20-30% more metabolic energy while walking so that it can cause fatigue for the user. Transtibial bionic prosthesis research is growing, transtibial bionic prosthesis can overcome the weakness of passive prosthesis because it can produce push-off during gait cycle and several researchers have shown that bionic prostheses are capable of mimicking the human gait, as well as improve the  performance in a more natural gait and normal walking. This study aims to study the existing transtibial bionic prosthesis by comparing between 6 existing designs of powered ankle or transtibial bionic prosthesis that have been published in several publications. The discussion focuses on the design and mechanical systems, actuators related to the selection of motors and drive mechanisms as well as power transmission from actuators to moving components.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Xin Liu ◽  
Bin Zheng ◽  
Qinwei Guo ◽  
Yuanyuan Yu ◽  
Zhongshi Zhang ◽  
...  

Introduction. We evaluated the velocity profiles of patients with lateral collateral ligament (LCL) injuries of the ankle with a goal of understanding the control mechanism involved in walking. Methods. We tracked motions of patients’ legs and feet in 30 gait cycles recorded from patients with LCL injuries of the ankle and compared them to 50 gait cycles taken from normal control subjects. Seventeen markers were placed on the foot following the Heidelberg foot measurement model. Velocity profiles and microadjustments of the knee, ankle, and foot were calculated during different gait phases and compared between the patient and control groups. Results. Patients had a smaller first rocker percentage and larger second rocker percentage in the gait cycle compared to controls. Patients also displayed shorter stride length and slower strides and performed more microadjustments in the second rocker phase than in other rocker/swing phases. Patients’ mean velocities of the knee, ankle, and foot in the second rocker phase were also significantly higher than that in control subjects. Discussion. Evidence from velocity profiles suggested that patients with ligament injury necessitated more musculoskeletal microadjustments to maintain body balance, but these may also be due to secondary injury. Precise descriptions of the spatiotemporal gait characteristics are therefore crucial for our understanding of movement control during locomotion.


2022 ◽  
Author(s):  
Saif M. J. Haider ◽  
Ayad M. Takhakh ◽  
Muhannad Al-Waily ◽  
Yasir Saadi

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 95
Author(s):  
Maria Stella Valle ◽  
Antonino Casabona ◽  
Ilenia Sapienza ◽  
Luca Laudani ◽  
Alessandro Vagnini ◽  
...  

The Timed Up and Go (TUG) test quantifies physical mobility by measuring the total performance time. In this study, we quantified the single TUG subcomponents and, for the first time, explored the effects of gait cycle and pelvis asymmetries on them. Transfemoral (TF) and transtibial (TT) amputees were compared with a control group. A single wearable inertial sensor, applied to the back, captured kinematic data from the body and pelvis during the 10-m walk test and the TUG test. From these data, two categories of symmetry indexes (SI) were computed: One SI captured the differences between the antero-posterior accelerations of the two sides during the gait cycle, while another set of SI quantified the symmetry over the three-dimensional pelvis motions. Moreover, the total time of the TUG test, the time of each subcomponent, and the velocity of the turning subcomponents were measured. Only the TF amputees showed significant reductions in each SI category when compared to the controls. During the TUG test, the TF group showed a longer duration and velocity reduction mainly over the turning subtasks. However, for all the amputees there were significant correlations between the level of asymmetries and the velocity during the turning tasks. Overall, gait cycle and pelvis asymmetries had a specific detrimental effect on the turning performance instead of on linear walking.


2021 ◽  
Author(s):  
Rishabh Bajpai ◽  
Deepak Joshi

<pre><p>Gait disorders in children with cerebral palsy (CP) affect their mental, physical, economic, and social lives. Gait assessment is one of the essential steps of gait management. It has been widely used for clinical decision making and evaluation of different treatment outcomes. However, most of the present methods of gait assessment are subjective, less sensitive to small pathological changes, time-taking and need a great effort of an expert. This work proposes an automated, comprehensive gait assessment score (A-GAS) for gait disorders in CP. Kinematic data of 356 CP and 41 typically developing subjects is used to validate the performance of A-GAS. For the computation of A-GAS, instance abnormality index (AII) and abnormality index (AI) are calculated. AII quantifies gait abnormality of a gait cycle instance, while AI quantifies gait abnormality of a joint angle profile during walking. AII is calculated for all gait cycle instances by performing probabilistic and statistical analyses. Abnormality index (AI) is a weighted sum of AII, computed for each joint angle profile. A-GAS is a weighted sum of AI, calculated for a lower limb. Moreover, a graphical representation of the gait assessment report, including AII, AI, and A-GAS is generated for providing a better depiction of the assessment score. Furthermore, the work compares A-GAS with a present rating-based gait assessment scores to understand fundamental differences. Finally, A-GAS's performance is verified for a high-cost multi-camera set-up using nine joint angle profiles and a low-cost single camera set-up using three joint angle profiles. Results show no significant differences in performance of A-GAS for both the set-ups. Therefore, A-GAS for both the set-ups can be used interchangeably. </p> </pre>


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Riska Analia ◽  
Jan Hong ◽  
Joshua Mangkey ◽  
Susanto ◽  
Daniel Pamungkas ◽  
...  

The development of an assistive robot to assist human beings in walking normally is a difficult task. One of the main challenges lies in understanding the intention to walk, as an initial phase before walking commences. In this work, we classify the human gait cycle based on data from an inertial moment unit sensor and information on the angle of the hip joint and use the results as initial signals to produce a suitable assistive torque for a lower limb exoskeleton. A neural network module is used as a prediction module to identify the intention to walk based on the gait cycle. A decision tree method is implemented in our system to generate the assistive torque, and a prediction of the human gait cycle is used as a reference signal. Real-time experiments are carried out to verify the performance of the proposed method, which can differentiate between various types of walking. The results show that the proposed method is able to predict the intention to walk as an initial phase and is also able to provide an assistive torque based on the information predicted for this phase.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Li Zhang ◽  
Geng Liu ◽  
Bing Han ◽  
Yuzhou Yan ◽  
Junhua Fei ◽  
...  

Malalignment of the lower limbs is the main biomechanical factor for knee osteoarthritis (KOA). The static hip-knee-ankle angle (S-HKAA) measured from radiograph is regarded as the “gold standard” of the malalignment. However, many evidences showed that the S-HKAA has no significant correlation with the knee dynamic-load distribution, unlike the dynamic HKAA (D-HKAA). The purpose of this study was to quantitatively analyze the D-HKAA and investigate the relationship between D-HKAA and S-HKAA for both KOA and healthy participants. In this paper, twenty-five healthy subjects and twenty-five medial compartment KOA (M-KOA) patients were recruited. Three-dimensional motion analysis and standing lower-limbs-full-length radiograph were utilized to obtain the D-HKAA and S-HKAA, respectively. The results showed that the mean D-HKAA was more varus than the S-HKAA ( p < 0.05 ). For the mean D-HKAA, larger varus angle was observed in swing phase than stance phase ( p < 0.05 ). Compared with healthy subjects, the M-KOA patients had remarkably smaller S-HKAA and D-HKAA during gait cycle ( p < 0.01 ). For the relationship between the S-HKAA and mean D-HKAA, no significant correlation was found for both healthy subjects and M-KOA patients ( r < 0.357 , n = 25 , p > 0.05 , Spearman correlation analysis). In conclusion, the S-HKAA was limited to predict the D-HKAA for both M-KOA patients and healthy subjects. The D-HKAA should be given more attention to the orthopedist and the designer of knee brace and orthotics.


Sign in / Sign up

Export Citation Format

Share Document