On the automorphism group of the canonical double covering of bordered Klein surfaces with large automorphism group

1996 ◽  
Vol 82 (6) ◽  
pp. 3773-3779 ◽  
Author(s):  
A. M. Porto Fereira da Silva ◽  
A. F. Costa
Author(s):  
Emilio Bujalance ◽  
José Javier Etayo ◽  
José Manuel Gamboa ◽  
Grzegorz Gromadzki

2019 ◽  
Vol 6 (1) ◽  
pp. 294-302 ◽  
Author(s):  
Antonio Lotta

AbstractWe discuss the classifiation of simply connected, complete (κ, µ)-spaces from the point of view of homogeneous spaces. In particular, we exhibit new models of (κ, µ)-spaces having Boeckx invariant -1. Finally, we prove that the number ${{(n + 1)(n + 2)} \over 2}$ is the maximum dimension of the automorphism group of a contact metric manifold of dimension 2n +1, n ≥ 2, whose symmetric operator h has rank at least 3 at some point; if this dimension is attained, and the dimension of the manifold is not 7, it must be a (κ, µ)-space. The same conclusion holds also in dimension 7 provided the almost CR structure of the contact metric manifold under consideration is integrable.


1991 ◽  
Vol 33 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Coy L. May

A compact bordered Klein surface X of algebraic genus g ≥ 2 has maximal symmetry [6] if its automorphism group A(X) is of order 12(g — 1), the largest possible. The bordered surfaces with maximal symmetry are clearly of special interest and have been studied in several recent papers ([6] and [9] among others).


1988 ◽  
Vol 35 (3) ◽  
pp. 361-368 ◽  
Author(s):  
E. Bujalance ◽  
J. A. Bujalance ◽  
E. Martínez

2012 ◽  
Vol 12 (02) ◽  
pp. 1250164 ◽  
Author(s):  
J. J. ETAYO ◽  
E. MARTÍNEZ

Every finite group G acts as an automorphism group of some non-orientable Klein surfaces without boundary. The minimal genus of these surfaces is called the symmetric crosscap number and denoted by [Formula: see text]. It is known that 3 cannot be the symmetric crosscap number of a group. Conversely, it is also known that all integers that do not belong to nine classes modulo 144 are the symmetric crosscap number of some group. Here we obtain infinitely many groups whose symmetric crosscap number belong to each one of six of these classes. This result supports the conjecture that 3 is the unique integer which is not the symmetric crosscap number of a group. On the other hand, there are infinitely many groups with symmetric crosscap number 1 or 2. For g > 2 the number of groups G with [Formula: see text] is finite. The value of [Formula: see text] is known when G belongs to certain families of groups. In particular, if o(G) < 32, [Formula: see text] is known for all except thirteen groups. In this work we obtain it for these groups by means of a one-by-one analysis. Finally we obtain the least genus greater than two for those exceptional groups whose symmetric crosscap number is 1 or 2.


2004 ◽  
Vol 282 (2) ◽  
pp. 758-796 ◽  
Author(s):  
Dragomir Ž. Đoković ◽  
Kaiming Zhao

Author(s):  
Emilio Bujalance ◽  
José Javier Etayo ◽  
José Manuel Gamboa ◽  
Grzegorz Gromadzki

Sign in / Sign up

Export Citation Format

Share Document