Models of the development of large-scale nuclear power in Russia with a transmutation nuclear fuel cycle and attainment of radiation equivalence of high-level wastes and natural uranium

Atomic Energy ◽  
1997 ◽  
Vol 82 (1) ◽  
pp. 1-7 ◽  
Author(s):  
E. O. Adamov ◽  
I. Kh. Ganev ◽  
A. V. Lopatkin ◽  
V. G. Muratov ◽  
V. V. Orlov
Energy ◽  
1977 ◽  
Vol 2 (4) ◽  
pp. 323-363
Author(s):  
R. Avenhaus ◽  
W. Häfele ◽  
P.E. McGrath

Author(s):  
Marco Ciotti ◽  
Jorge L. Manzano ◽  
Vladimir Kuznetsov ◽  
Galina Fesenko ◽  
Luisa Ferroni ◽  
...  

Financial aspects, environmental concerns and non-favorable public opinion are strongly conditioning the deployment of new Nuclear Energy Systems across Europe. Nevertheless, new possibilities are emerging to render competitive electricity from Nuclear Power Plants (NPPs) owing to two factors: the first one, which is the fast growth of High Voltage lines interconnecting the European countries’ national electrical grids, this process being triggered by huge increase of the installed intermittent renewable electricity sources (Wind and PV); and the second one, determined by the carbon-free constraints imposed on the base load electricity generation. The countries that due to public opinion pressure can’t build new NPPs on their territory may find it profitable to produce base load nuclear electricity abroad, even at long distances, in order to comply with the European dispositions on the limitation of the CO2 emissions. In this study the benefits from operating at multinational level with the deployment of a fleet of PWRs and subsequently, at a proper time, the one of Lead Fast Reactors (LFRs) are analyzed. The analysis performed involves Italy (a country with a current moratorium on nuclear power on spite that its biggest utility operates NPPs abroad), and the countries from South East and Central East Europe potentially looking for introduction or expansion of their nuclear power programmes. According to the predicted evolution of their Gross Domestic Product (GDP) a forecast of the electricity consumption evolution for the present century is derived with the assumption that a certain fraction of it will be covered by nuclear electricity. In this context, evaluated are material balances for the front and the back end of nuclear fuel cycle associated with the installed nuclear capacity. A key element of the analysis is the particular type of LFR assumed in the scenario, characterized by having a fuel cycle where only fission products and the reprocessing losses are sent for disposition and natural or depleted uranium is added to fuel in each reprocessing cycle. Such LFR could be referred to as “adiabatic reactor”. Owing to introduction of such reactors a substantive reduction in uranium consumption and final disposal requirements can be achieved. Finally, the impacts of the LFR and the economy of scale in nuclear fuel cycle on the Levelized Cost of Electricity (LCOE) are being evaluated, for scaling up from a national to a multinational dimension, illustrating the benefits potentially achievable through cooperation among countries.


MRS Bulletin ◽  
2010 ◽  
Vol 35 (11) ◽  
pp. 859-866 ◽  
Author(s):  
Rodney C. Ewing ◽  
Wolfgang Runde ◽  
Thomas E. Albrecht-Schmitt

The resurgence of nuclear power as a strategy for reducing greenhouse gas (GHG) emissions has, in parallel, revived interest in the environmental impact of actinides. Just as GHG emissions are the main environmental impact of the combustion of fossil fuels, the fate of actinides, consumed and produced by nuclear reactions, determines whether nuclear power is viewed as an environmentally “friendly” source of energy. In this article, we summarize the sources of actinides in the nuclear fuel cycle, how actinides are separated by chemical processing, the development of actinide-bearing materials, and the behavior of actinides in the environment. At each stage, actinides present a unique and complicated behavior because of the 5f electronic configurations.


2020 ◽  
Vol 6 (2) ◽  
pp. 93-98
Author(s):  
Nikita V. Kovalev ◽  
Boris Ya. Zilberman ◽  
Nikolay D. Goletsky ◽  
Andrey B. Sinyukhin

A review of simulated nuclear fuel cycles with mixed uranium-plutonium fuel (REMIX) was carried out. The concept of REMIX fuel is one of the options for closing the nuclear fuel cycle (NFC), which makes it possible to recycle uranium and plutonium in VVER-1000/1200 thermal reactors at a 100% core loading. The authors propose a new approach to the recycling of spent nuclear fuel (SNF) in thermal reactors. The approach implies a simplified fabrication of mixed fuel when plutonium is used in high concentration together with enriched natural uranium, while reprocessed uranium is supposed to be enriched and used separately. The share of standard enriched natural uranium fuel in this nuclear fuel cycle is more than 50%, the share of mixed natU+Pu fuel is 25%, the rest is fuel obtained from enriched reprocessed uranium. It is emphasized that the new approach has the maximum economic prospect and makes it possible to organize the fabrication of this fuel and nuclear material cross-cycling at the facilities available in the Russian Federation in the short term. This NFC option eliminates the accumulation of SNF in the form of spent fuel assemblies (SFA). SNF is always reprocessed with the aim of further using the primary reprocessed uranium and plutonium. Non-recyclable in thermal reactors, burnt, reprocessed uranium, the energy potential of which is comparable to natural uranium, as well as secondary plutonium intended for further use in fast reactors, are sent as reprocessing by-products to the storage area.


Author(s):  
Akbar Abbasi

Nuclear power plants to generates electric energy used nuclear fuel such as Uranium Oxide (UOX). A typical VVER−1000 reactor uses about 20–25 tons of spent fuel per year. The fuel transmutation of UOX fuel was evaluated by VISTA computer code. In this estimation the front end and back end components of fuel cycle was calculated. The front end of the cycle parameter are FF requirements, enrichment value requirements, depleted uranium amount, conversion requirements and natural uranium requirements. The back-end component is Spent Fuel (SF), Actinide Inventory (AI) and Fission Product (FP) radioisotopes.


Author(s):  
Chellapandi Perumal ◽  
V. Balasubramaniyan ◽  
P. Puthiyavinayagam ◽  
Raghupathy Sundararajan ◽  
Madhusoodanan Kanakkil ◽  
...  

Indian nuclear power programme is being implemented in three stages taking in to consideration limited uranium resources and vast thorium resources in the country. The first stage consists of investing natural uranium in Pressurized Heavy Water Reactors (PHWR). This stage has the potential of 10 GWe. The second stage involves large scale deployment of Fast Breeder Reactors (FBR) with co-located fuel cycle facilities to utilize the plutonium and depleted uranium extracted from the PHWR spent fuel. This stage has a potential of about 300 GWe. In the third stage, effective utilization of the vast thorium resources is planned. Indira Gandhi Centre for Atomic Research (IGCAR) instituted in 1971 at Kalpakkam, is involved in the mission of developing the technology of FBR. A host of multidisciplinary laboratories are established in the centre around the central facility of the 40 MWt Fast Breeder Test Reactor (FBTR). Presently, the construction of indigenously designed MOX fueled 500 MWe Prototype Fast Breeder Reactor (PFBR) that started in 2003 is in advanced stage and commissioning activities are underway. The design of PFBR incorporates several state-of-art features and is foreseen as an industrial scale techno-economic viability demonstrator for the FBR program. Beyond PFBR, the proposal is to build one twin unit having two reactors, with each of improved design compared to PFBR, to be commissioned by 2025. Subsequently, towards rapid realization of nuclear power, the department is planning a series of metal fueled FBRs starting with a 500 MWe Metal fuel Demonstration Fast Breeder Reactor (MDFR-500) to be followed by industrial scale 1000 MWe metal fueled reactors. The paper discusses in detail the above aspects and highlights the activities carried out towards designing MDFR.


Sign in / Sign up

Export Citation Format

Share Document