radiation monitoring
Recently Published Documents


TOTAL DOCUMENTS

875
(FIVE YEARS 171)

H-INDEX

23
(FIVE YEARS 4)

2022 ◽  
Author(s):  
W Kent Tobiska ◽  
Brad Gersey ◽  
Leonid Didkovsky ◽  
Seth Wieman ◽  
Kevin Judge ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1567
Author(s):  
Yuheng Yan ◽  
Changfeng Zhang ◽  
Luchuan Zheng ◽  
Taiqi Wang ◽  
Mao Li ◽  
...  

This paper focuses on the preparation of cerium-doped yttrium aluminum garnet (YAG: Ce) powder with several concentration gradients via the sol-gel method by detecting its structural characteristics via X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) to verify the generation of a complete crystal phase and evenly distributed nanopowder. On this basis, the luminescence characteristics of Ce3+ are explored, the mechanism and model are discussed based on the spectra, and the ideal doping concentration was obtained by comparing the luminescence intensity along with the fluorescence quenching theory and fluorescence decay spectra of samples with different doping concentrations. Several radiation dosimeters based on YAG: Ce phosphors were made; the online radiation monitoring function was realized under the exposure of a standard X-ray source; the repeatability, accuracy, and sensitivity of the system were verified by experiments; and the factors affecting dosimeter response are discussed. This paper verifies the possibility of adhibiting YAG: Ce fluorescent powder for online X-ray monitoring, and lays the foundation for further research.


Author(s):  
Seongyeon Lee ◽  
Yoon Soo Chung ◽  
Chanwoo Park ◽  
In Soo Kang ◽  
Min Kyu Baek ◽  
...  

2021 ◽  
Vol 1 (2) ◽  
pp. 20-30
Author(s):  
Muhammad Rifqi Harahap ◽  

The facility’s licensee conducts environmental radiation monitoring in nuclear facilities to monitor radiation exposure in the facility’s vicinity. This activity is carried out also to monitor radiation release as a result of nuclear reactor operation. Aside from that, monitoring also works as a device to monitor radioactive release in a nuclear emergency. Therefore, the radiation monitoring system is crucial in nuclear utilization facilities to determine the number of radiation exposure to the surrounding environment. However, the existing stationary monitoring system has a risk of being unable to work if the system is down in case of natural disaster occurs. One way to mitigate this risk is to deploy an unmanned radiation monitoring system to monitor radiation exposure without putting personnel at risk. To define a suitable unmanned radiation monitoring system, identification of facilities and infrastructure required to design an unmanned radiation monitoring system for a research reactor in Indonesia is carried out. Facilities and infrastructure needed for unmanned radiation monitoring systems are unmanned aerial vehicles, radiation detector, control and communication module, navigation system, and software for the control system. These required facilities and infrastructure are then specified to determine the necessary specification for monitoring research reactor in Indonesia. The facilities’ required specifications are unmanned aerial vehicles with rotary-wing type, CdZnTe Detector, and GPS/GLONASS based navigation system. For infrastructure specification, control and communication module and software for the control system is not specified in how the system could meet the expected required performance rather than in detail. However, the system must provide and process measurement data in real-time to be presented in a radiation heatmap. Keywords: Identification, Radiation Monitoring, Unmanned


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7629
Author(s):  
Muhammad Ikmal Ahmad ◽  
Mohd Hafizi Ab. Rahim ◽  
Rosdiadee Nordin ◽  
Faizal Mohamed ◽  
Asma’ Abu-Samah ◽  
...  

As nuclear technology evolves, and continues to be used in various fields since its discovery less than a century ago, radiation safety has become a major concern to humans and the environment. Radiation monitoring plays a significant role in preventive radiological nuclear detection in nuclear facilities, hospitals, or in any activities associated with radioactive materials by acting as a tool to measure the risk of being exposed to radiation while reaping its benefit. Apart from in occupational settings, radiation monitoring is required in emergency responses to radiation incidents as well as outdoor radiation zones. Several radiation sensors have been developed, ranging from as simple as a Geiger-Muller counter to bulkier radiation systems such as the High Purity Germanium detector, with different functionality for use in different settings, but the inability to provide real-time data makes radiation monitoring activities less effective. The deployment of manned vehicles equipped with these radiation sensors reduces the scope of radiation monitoring operations significantly, but the safety of radiation monitoring operators is still compromised. Recently, the Internet of Things (IoT) technology has been introduced to the world and offered solutions to these limitations. This review elucidates a systematic understanding of the fundamental usage of the Internet of Drones for radiation monitoring purposes. The extension of essential functional blocks in IoT can be expanded across radiation monitoring industries, presenting several emerging research opportunities and challenges. This article offers a comprehensive review of the evolutionary application of IoT technology in nuclear and radiation monitoring. Finally, the security of the nuclear industry is discussed.


Author(s):  
Tran Duc Tan

Ocean radiation monitoring systems (ORMSs) are an essential component in the radiation early warning network that monitors radiation exposure and estimates radioactive propagation induced by nuclear activities or nuclear accidents in the sea. Numerous systems have been developed and installed in the radiation warning network in different countries. However, there is not any similar product that has been studied and developed in Vietnam. This paper presents a complete process in designing and manufacturing a marine buoy integrated with a radiation sensor. The radiation detector can measure both dose rate and radiological spectrum. The ORMS also combines multimodal data transmission and various programmed software for data processing, signal transmission, and system control. Therefore, the proposed configuration system has potential application in terms of performance and maintenance.


2021 ◽  
Vol 1 ◽  
pp. 15-16
Author(s):  
Aleksander Wosniok ◽  
Katerina Krebber

Abstract. The international research efforts focused on the development of radiation sensors based on optic fibers have their origins in the 1970s (Evans et al., 1978). Generally, the lightweight fiber optic sensors are immune to electromagnetic field interference and high voltages making them deployable in harsh environments at hard to reach areas where conventional sensors usually will not work at all. A further advantage of such radiation sensors is the possibility of remote and real-time monitoring (Huston et al., 2001). In this work, we present our results achieved in several research activities for development of fiber optic dosimeters. The findings show that both the measurement of the radiation-induced attenuation (RIA) along the entire sensing fiber and the accompanying change in the refractive index of the fiber core can be used for distributed radiation monitoring in the kGy and MGy range, respectively. Depending on the fiber type and material the RIA shows varying response to dose rates, environmental temperatures and the wavelength of the laser source used. Thereby, an operation with visible laser light provides most favorable performance in terms of high radiation sensitivity. Operating at these wavelengths, RIA monitoring could yield high-sensitivity dose measurement with sub-gray resolution and accuracy (Stajanca and Krebber, 2017b); however, conventional optical time-domain reflectometry (OTDR) systems for RIA measurements operating in the visible range suffer from low-spatial resolution, long measurement times and poor signal-to-noise (SNR) ratio. The limitations of the OTDR performance can be overcome by the incoherent optical frequency domain reflectometry (I-OFDR) developed by the Federal Institute of Materials Research and Testing (BAM, Liehr et al., 2009) with potential for dynamic real-time measurement. Over the years, several highly radiation sensitive fibers, such as perfluorinated polymer optical fibers (PF-POF, Stajanca and Krebber, 2017a), phosphorous-doped silica optical fibers (SOF, Paul et al., 2009), aluminium-doped SOF (Faustov et al., 2013) and erbium-doped SOF (Wosniok et al., 2016) have been identified and are commercially available. As mentioned before, the radiation-induced RIA increase is associated with an increase in the refractive index leading also to material compaction in the fiber core. The latter two effects can be used for measuring radiation distribution based on Brillouin scattering in the range of high radiation doses of several MGy (Phéron et al., 2012; Wosniok et al., 2016). When using fiber optic sensors for radiation monitoring, the existing post-irradiation annealing behavior of the optical fiber sensors must also be considered.


Sign in / Sign up

Export Citation Format

Share Document