The transient stage of long-term synaptic facilitation in defensive behavior command neurons in sensitized snails

2000 ◽  
Vol 30 (3) ◽  
pp. 267-276
Author(s):  
V. P. Nikitin
1975 ◽  
Vol 100 (1) ◽  
pp. 198-204 ◽  
Author(s):  
H.L. Atwood ◽  
L.E. Swenarchuk ◽  
C.R. Gruenwald

2017 ◽  
Vol 61 (2) ◽  
pp. 263-267
Author(s):  
Michał Schulz ◽  
Radosław Ścibior ◽  
Kamil Badurowicz ◽  
Aleksandra Łoś ◽  
Milena Bajda ◽  
...  

Abstract Xylocopa valga, commonly called the carpenter bee and the largest bee with metallicviolet hair cover, is extremely rarely observed in Poland. We hypothesize that a stable and possibly long-term population of X. valga can be maintained in Poland through the creation of suitable nesting conditions. X. valga has been observed since the spring of 2014 in Wisznice (south-eastern Poland). A nesting box made out of 25 wooden blocks with drilled holes was hung about 2.5 meters above the ground. X. valga were interested in the blocks made of willow wood but did not nest in the beech, alder and pine. The carpenter bees chose holes made with drill bits of 10, 15, 20 mm in diameter and a length of 10, 15 and 20 cm. X. valga flying in the same direction most often visited the flora taxa: Aquilegia vulgaris, Ballota nigra, Consolida ajacis, Delphinium consolida, Deutzia scabra, Catalpa spp., Wisteria spp., Robinia ambigua, Stachys spp. and Trifolium pretense. X. valga is a solitary bee, but unlike most other solitary bees it demonstrates aspects of social behavior. It was observed to display cohabitative behavior involving the use of a single hole by more than one female. The females showed aggressive defensive behavior and if approached too closely started buzzing loudly. The information obtained during the long-term observation shows that X. valga can be maintained in partly artificial conditions to increase and stabilize the bee population.


2000 ◽  
Vol 84 (5) ◽  
pp. 2484-2493 ◽  
Author(s):  
Peter V. Nguyen ◽  
Steven N. Duffy ◽  
Jennie Z. Young

Transgenic and knockout mice are used extensively to elucidate the molecular mechanisms of hippocampal synaptic plasticity. However, genetic and phenotypic variations between inbred mouse strains that are used to construct genetic models may confound the interpretation of cellular neurophysiological data derived from these models. Using in vitro slice stimulation and recording methods, we compared the membrane biophysical, cellular electrophysiological, and synaptoplastic properties of hippocampal CA1 neurons in four specific strains of inbred mice: C57BL/6J, CBA/J, DBA/2J, and 129/SvEms/J. Hippocampal long-term potentiation (LTP) induced by theta-pattern stimulation, and by repeated multi-burst 100-Hz stimulation at various interburst intervals, was better maintained in area CA1 of slices from BL/6J mice than in slices from CBA and DBA mice. At an interburst interval of 20 s, maintenance of LTP was impaired in CBA and DBA slices, as compared with BL/6J slices. When the interburst interval was reduced to 3 s, induction of LTP was significantly enhanced in129/SvEms slices, but not in DBA and CBA slices. Long-term depression (LTD) was not significantly different between slices from these four strains. For the four strains examined, CA1 pyramidal neurons showed no significant differences in spike-frequency accommodation, membrane input resistance, and number of spikes elicited by current injection. Synaptically-evoked glutamatergic postsynaptic currents did not significantly differ among CA1 pyramidal neurons in these four strains. Since the observed LTP deficits resembled those previously seen in transgenic mice with reduced hippocampal cAMP-dependent protein kinase (PKA) activity, we searched for possible strain-dependent differences in cAMP-dependent synaptic facilitation induced by forskolin (an activator of adenylate cyclase) and IBMX (a phosphodiesterase inhibitor). We found that forskolin/IBMX-induced synaptic facilitation was deficient in area CA1 of DBA/2J and CBA/J slices, but not in BL/6J and 129/SvEms/J slices. These defects in cAMP-induced synaptic facilitation may underlie the deficits in memory, observed in CBA/J and DBA/2J mice, that have been previously reported. We conclude that hippocampal LTP is influenced by genetic background and by the temporal characteristics of the stimulation protocol. The plasticity of hippocampal synapses in some inbred mouse strains may be “tuned” to particular temporal patterns of synaptic activity. From a broader perspective, our data support the notion that strain-dependent variation in genetic background is an important factor that can influence the synaptoplastic phenotypes observed in studies that use genetically modified mice to explore the molecular bases of synaptic plasticity.


Sign in / Sign up

Export Citation Format

Share Document