ca1 pyramidal neurons
Recently Published Documents





2022 ◽  
Olesia M Bilash ◽  
Spyridon Chavlis ◽  
Panayiota Poirazi ◽  
Jayeeta Basu

The lateral entorhinal cortex (LEC) provides information about multi-sensory environmental cues to the hippocampus through direct inputs to the distal dendrites of CA1 pyramidal neurons. A growing body of work suggests that LEC neurons perform important functions for episodic memory processing, coding for contextually-salient elements of an environment or the experience within it. However, we know little about the functional circuit interactions between LEC and the hippocampus. In this study, we combine functional circuit mapping and computational modeling to examine how long-range glutamatergic LEC projections modulate compartment-specific excitation-inhibition dynamics in hippocampal area CA1. We demonstrate that glutamatergic LEC inputs can drive local dendritic spikes in CA1 pyramidal neurons, aided by the recruitment of a disinhibitory vasoactive intestinal peptide (VIP)-expressing inhibitory neuron microcircuit. Our circuit mapping further reveals that, in parallel, LEC also recruits cholecystokinin (CCK)-expressing inhibitory neurons, which our model predicts act as a strong suppressor of dendritic spikes. These results provide new insight into a cortically-driven GABAergic microcircuit mechanism that gates non-linear dendritic computations, which may support compartment-specific coding of multi-sensory contextual features within the hippocampus.

Daniela Bianchi ◽  
Rosanna Migliore ◽  
Paola Vitale ◽  
Machhindra Garad ◽  
Paula A. Pousinha ◽  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Caryn R Hale ◽  
Kirsty Sawicka ◽  
Kevin Mora ◽  
John J Fak ◽  
Jin Joo Kang ◽  

Neurons rely on translation of synaptic mRNAs in order to generate activity-dependent changes in plasticity. Here we develop a strategy combining compartment-specific CLIP and TRAP in conditionally tagged mice to precisely define the ribosome-bound dendritic transcriptome of CA1 pyramidal neurons. We identify CA1 dendritic transcripts with differentially localized mRNA isoforms generated by alternative polyadenylation and alternative splicing, including many which have altered protein-coding capacity. Among dendritic mRNAs, FMRP targets were found to be overrepresented. Cell-type specific FMRP-CLIP and TRAP in microdissected CA1 neuropil revealed 383 dendritic FMRP targets and suggests that FMRP differentially regulates functionally distinct modules in CA1 dendrites and cell bodies. FMRP regulates ~15-20% of mRNAs encoding synaptic functions and 10% of chromatin modulators, in the dendrite and cell body, respectively. In the absence of FMRP, dendritic FMRP targets had increased ribosome association, consistent with a function for FMRP in synaptic translational repression. Conversely, downregulation of FMRP targets involved in chromatin regulation in cell bodies and suggest a role for FMRP in stabilizing mRNAs containing stalled ribosomes in this compartment. Together, the data support a model in which FMRP regulates the translation and expression of synaptic and nuclear proteins within different compartments of a single neuronal cell type.

2021 ◽  
Pablo Vergara ◽  
Gabriela Pino ◽  
Jorge Vera ◽  
Magdalena Sanhueza

Prolonged changes in neural activity trigger homeostatic synaptic plasticity (HSP) allowing neuronal networks to operate in functional ranges. Cell-wide or input-specific adaptations can be induced by pharmacological or genetic manipulations of activity, and by sensory deprivation. Reactive functional changes caused by deafferentation may partially share mechanisms with HSP. Acute hippocampal slices constitute a suitable model to investigate relatively rapid (hours) pathway-specific modifications occurring after denervation and explore the underlying mechanisms. As Schaffer collaterals constitute a major glutamatergic input to CA1 pyramidal neurons, we conducted whole-cell recordings of miniature excitatory postsynaptic currents (mEPSCs) to evaluate changes over 12 hours after slice preparation and CA3 dissection. We observed an increment in mEPSCs amplitude and a decrease in decay time, suggesting synaptic AMPA receptor upregulation and subunit content modifications. Sorting mEPSC by rise time, a correlate of synapse location along dendrites, revealed amplitude raises at two separate domains. A specific frequency increase was observed in the same domains and was accompanied by a global, unspecific raise. Amplitude and frequency increments were lower at sites initially more active, consistent with local compensatory processes. Transient preincubation with a specific Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor either blocked or occluded amplitude and frequency upregulation in different synapse populations. Results are consistent with the concurrent development of different known CaMKII-dependent HSP processes. Our observations support that deafferentation causes rapid and diverse compensations resembling classical slow forms of adaptation to inactivity. These results may contribute to understand fast-developing homeostatic or pathological events after brain injury.

2021 ◽  
Carol Upchurch ◽  
Crescent L. Combe ◽  
Christopher Knowlton ◽  
Valery G. Rousseau ◽  
Sonia Gasparini ◽  

The hippocampus is involved in memory and spatial navigation. Many CA1 pyramidal cells function as place cells, increasing their firing rate when a specific place field is traversed. The dependence of CA1 place cell firing on position within the place field is asymmetric. We investigated the source of this asymmetry by injecting triangular depolarizing current ramps to approximate the spatially-tuned, temporally-diffuse depolarizing synaptic input received by these neurons while traversing a place field. Ramps were applied to rat CA1 pyramidal neurons in vitro (slice electrophysiology) and in silico (multi-compartmental NEURON model). Under control conditions, CA1 neurons fired more action potentials at higher frequencies on the up-ramp versus the down-ramp. This effect was more pronounced for dendritic compared to somatic ramps. We incorporated a five-state Markov scheme for NaV1.6 channels into our model and calibrated the spatial dependence of long-term inactivation according to the literature; this spatial dependence was sufficient to explain the difference in dendritic versus somatic ramps. Long-term inactivation reduced the firing frequency by decreasing open-state occupancy, and reduced spike amplitude during trains by decreasing occupancy in closed states, which comprise the available pool. PKC activators like phorbol ester phorbol-dibutyrate (PDBu) are known to reduce NaV long-term inactivation. PDBu application removed spike amplitude attenuation during spike trains in vitro, more visibly in dendrites, consistent with decreased NaV long-term inactivation. Moreover, PDBu greatly reduced adaptation, consistent with our hypothesized mechanism. Our synergistic experimental/computational approach shows that long-term inactivation of NaV1.6 is the primary mechanism of adaptation in CA1 pyramidal cells.

2021 ◽  
Vol 11 (1) ◽  
Carol Eisenberg ◽  
Deepak Subramanian ◽  
Milad Afrasiabi ◽  
Patryk Ziobro ◽  
Jack DeLucia ◽  

AbstractThe neuropilin receptors and their secreted semaphorin ligands play key roles in brain circuit development by regulating numerous crucial neuronal processes, including the maturation of synapses and migration of GABAergic interneurons. Consistent with its developmental roles, the neuropilin 2 (Nrp2) locus contains polymorphisms in patients with autism spectrum disorder (ASD). Nrp2-deficient mice show autism-like behavioral deficits and propensity to develop seizures. In order to determine the pathophysiology in Nrp2 deficiency, we examined the hippocampal numbers of interneuron subtypes and inhibitory regulation of hippocampal CA1 pyramidal neurons in mice lacking one or both copies of Nrp2. Immunostaining for interneuron subtypes revealed that Nrp2−/− mice have a reduced number of parvalbumin, somatostatin, and neuropeptide Y cells, mainly in CA1. Whole-cell recordings identified reduced firing and hyperpolarized shift in resting membrane potential in CA1 pyramidal neurons from Nrp2+/− and Nrp2−/− mice compared to age-matched wild-type controls indicating decrease in intrinsic excitability. Simultaneously, the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) are reduced in Nrp2-deficient mice. A convulsive dose of kainic acid evoked electrographic and behavioral seizures with significantly shorter latency, longer duration, and higher severity in Nrp2−/− compared to Nrp2+/+ animals. Finally, Nrp2+/− and Nrp2−/− but not Nrp2+/+, mice have impaired cognitive flexibility demonstrated by reward-based reversal learning, a task associated with hippocampal circuit function. Together these data demonstrate a broad reduction in interneuron subtypes and compromised inhibition in CA1 of Nrp2−/− mice, which could contribute to the heightened seizure susceptibility and behavioral deficits consistent with an ASD/epilepsy phenotype.

2021 ◽  
Amelie Eichler ◽  
Dimitrios Kleidonas ◽  
Zsolt Turi ◽  
Matthias Kirsch ◽  
Dietmar Pfeifer ◽  

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that is widely used in clinical practice for therapeutic purposes. Nevertheless, the mechanisms that mediate its therapeutic effects remain poorly understood. Recent work implicates that microglia, the resident immune cells of the central nervous system, have a defined role in the regulation of physiological brain function, e.g. the expression of synaptic plasticity. Despite this observation, no evidence exists for a role of microglia in excitatory synaptic plasticity induced by rTMS. Here, we used repetitive magnetic stimulation of organotypic entorhino-hippocampal tissue cultures to test for the role of microglia in synaptic plasticity induced by 10 Hz repetitive magnetic stimulation (rMS). For this purpose, we performed PLX3397 (Pexidartinib) treatment to deplete microglia from tissue culture preparations. Using whole-cell patch-clamp recordings, live-cell microscopy, immunohistochemistry and transcriptome analysis, we assessed structural and functional properties of both CA1 pyramidal neurons and microglia to correlate the microglia phenotype to synaptic plasticity. PLX3397 treatment over 18 days reliably depletes microglia in tissue cultures, without affecting structural and functional properties of CA1 pyramidal neurons. Microglia-depleted cultures display defects in the ability of CA1 pyramidal neurons to express plasticity of excitatory synapses upon rMS. Notably, rMS induces a moderate release of proinflammatory and plasticity-promoting factors, while microglial morphology stays unaltered. We conclude that microglia play a crucial role in rMS-induced excitatory synaptic plasticity.

Sign in / Sign up

Export Citation Format

Share Document