genetic background
Recently Published Documents





2022 ◽  
Gido H. Schoenmacker ◽  
Kuaikuai Duan ◽  
Kelly Rootes-Murdy ◽  
Wenhao Jiang ◽  
Pieter J. Hoekstra ◽  

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder and is associated with structural grey matter differences in the brain. We investigated the genetic background of some of these brain differences in a sample of 899 adults and adolescents consisting of individuals with ADHD and healthy controls. Previous work in an overlapping sample identified three ADHD-related grey matter brain networks located in areas of the superior, middle, and inferior frontal gyrus as well as the cerebellar tonsil and culmen. We associated these brain networks with protein coding genes using a statistical stability selection approach. We identified ten genes, the most promising of which were NR3C2, TRHDE, SCFD1, GNAO1, and UNC5D. These genes are expressed in brain and linked to neuropsychiatric disorders including ADHD. With our results we aid in the growing understanding of the aetiology of ADHD from genes to brain to behaviour.

2022 ◽  
Vol 23 (2) ◽  
pp. 691
Andrej Rusin ◽  
Colin Seymour ◽  
Alan Cocchetto ◽  
Carmel Mothersill

Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) and Cancer-Related Fatigue (CRF) are syndromes with considerable overlap with respect to symptoms. There have been many studies that have compared the two conditions, and some of this research suggests that the etiologies of the conditions are linked in some cases. In this narrative review, CFS/ME and cancer are introduced, along with their known and putative mechanistic connections to multiple stressors including ionizing radiation. Next, we summarize findings from the literature that suggest the involvement of HPA-axis dysfunction, the serotonergic system, cytokines and inflammation, metabolic insufficiency and mitochondrial dysfunction, and genetic changes in CRF and CFS/ME. We further suspect that the manifestation of fatigue in both diseases and its causes could indicate that CRF and CFS/ME lie on a continuum of potential biological effects which occur in response to stress. The response to this stress likely varies depending on predisposing factors such as genetic background. Finally, future research ideas are suggested with a focus on determining if common biomarkers exist in CFS/ME patients and those afflicted with CRF. Both CFS/ME and CRF are relatively heterogenous syndromes, however, it is our hope that this review assists in future research attempting to elucidate the commonalities between CRF and CFS/ME.

2022 ◽  
Vol 19 (1) ◽  
Lisa M. F. Janssen ◽  
Manosij Ghosh ◽  
Frauke Lemaire ◽  
K. Michael Pollard ◽  
Peter H. M. Hoet

Abstract Background Autoimmunity can result from the interplay between genetic background and effects of environmental and/or occupational exposure to hazardous materials. Several compounds, including silica dust, have been linked with systemic autoimmunity and systemic autoimmune diseases, based on epidemiological evidence. For asbestos, a strong link with systemic autoimmune diseases does not yet exist, however, several studies have documented features of autoimmunity following asbestos exposure. Even so, human studies are limited in their ability to identify and examine isolated exposures, making it difficult to demonstrate causation or to assess pathogenic mechanisms. Therefore, this systematic review examines the existing animal evidence regarding autoimmunity and exposure to silicates (silica and asbestos). Methods PubMed and EMBASE were systematically searched for peer-reviewed studies examining systemic autoimmune disease-related outcomes after silicate exposure in rodents. Literature databases were searched up to September 2021 for studies written in English and where the full text was available. Search strings were established based on a PECO (Population, Exposure, Comparator, Outcome) format. After title, abstract, and full-text screening, thirty-four studies were identified for further analysis. Quality assessment through ToxR tool and qualitative analysis of the results was performed. Results Although there was significant heterogeneity in the included studies in terms of exposure protocol and genetic background of the rodent models used, it was noted that both genetic background and exposure to silicates [(crystalline) silica and asbestos] are highly relevant to the development of (sub-) clinical systemic autoimmune disease. Conclusion Parallels were observed between the findings from the animal (this review) and human (epidemiological) studies, arguing that experimental animal models are valuable tools for examining exacerbation or development of autoimmune disease after silicate exposure. However, genetic background and synergism between exposures should be considered in future studies.

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 98
Gautier Gilliaux ◽  
Daniel Desmecht

Human respiratory syncytial virus (hRSV) infection brings a wide spectrum of clinical outcomes, from a mild cold to severe bronchiolitis or even acute interstitial pneumonia. Among the known factors influencing this clinical diversity, genetic background has often been mentioned. In parallel, recent evidence has also pointed out that an early infectious experience affects heterologous infections severity. Here, we analyzed the importance of these two host-related factors in shaping the immune response in pneumoviral disease. We show that a prior gammaherpesvirus infection improves, in a genetic background-dependent manner, the immune system response against a subsequent lethal dose of pneumovirus primary infection notably by inducing a systematic expansion of the CD8+ bystander cell pool and by modifying the resident alveolar macrophages (AMs) phenotype to induce immediate cyto/chemokinic responses upon pneumovirus exposure, thereby drastically attenuating the host inflammatory response without affecting viral replication. Moreover, we show that these AMs present similar rapid and increased production of neutrophil chemokines both in front of pneumoviral or bacterial challenge, confirming recent studies attributing a critical antibacterial role of primed AMs. These results corroborate other recent studies suggesting that the innate immunity cells are themselves capable of memory, a capacity hitherto reserved for acquired immunity.

2022 ◽  
Vol 15 (1) ◽  
Mariem Ennouri ◽  
Andreas D. Zimmer ◽  
Emna Bahloul ◽  
Rim Chaabouni ◽  
Slaheddine Marrakchi ◽  

Abstract Background Ichthyosis is a heterogeneous group of Mendelian cornification disorders that includes syndromic and non-syndromic forms. Autosomal Recessive Congenital Ichthyosis (ARCI) and Ichthyosis Linearis Circumflexa (ILC) belong to non-syndromic forms. Syndromic ichthyosis is rather a large group of heterogeneous diseases. Overlapping phenotypes and genotypes between these disorders is a major characteristic. Therefore, determining the specific genetic background for each form would be necessary. Methods A total of 11 Tunisian patients with non-syndromic (8 with ARCI and 2 with ILC) and autosomal syndromic ichthyosis (1 patient) were screened by a custom Agilent HaloPlex multi-gene panel and the segregation of causative mutations were analyzed in available family members. Results Clinical and molecular characterization, leading to genotype–phenotype correlation in 11 Tunisian patients was carried out. Overall, we identified 8 mutations in 5 genes. Thus, in patients with ARCI, we identified a novel (c.118T > C in NIPAL4) and 4 already reported mutations (c.534A > C in NIPAL4; c.788G > A and c.1042C > T in TGM1 and c.844C > T in CYP4F22). Yellowish severe keratoderma was found to be associated with NIPAL4 variations and brachydactyly to TGM1 mutations. Two novel variations (c.5898G > C and c.2855A > G in ABCA12) seemed to be features of ILC. Delexon13 in CERS3 was reported in a patient with syndromic ichthyosis. Conclusions Our study further extends the spectrum of mutations involved in ichthyosis as well as clinical features that could help directing genetic investigation.

N. A. Zykova ◽  
E. V. Ignashina ◽  
E. D. Li ◽  
V. V. Kugryshev

Autoimmune Insulin syndrome (AIS), also named Hirata disease, is a rare condition characterized by hypoglycemic episodes due to the presence of high titers of insulin autoantibodies (IAA). AIS is a form of immune-mediated hypoglycemia, which develops when a triggering factor (medication or a viral infection) acts on an underlying predisposing genetic background. The diagnosis of IAS is challenging, requiring a careful workup aimed at excluding other causes of hyperinsulinemic hypoglucemia. The article presents a case of Hirata disease diagnosing of a patient of the therapy department of the Multidisciplinary Medical Center of the Bank of Russia.Purpose: Determining of the features of the diagnosis of Autoimmune Insulin syndrome (Hirata disease)Materials and methods: the article presents a clinical case of the diagnosis of Autoimmune insulin syndrome (Hirata disease), focuses on the diagnostic significance of laboratory tests. The article is intended for general practitioners, endocrinologists, gastroenterologists.

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Hildegard I. D. Mack ◽  
Jennifer Kremer ◽  
Eva Albertini ◽  
Elisabeth K. M. Mack ◽  
Pidder Jansen-Dürr

Abstract Background In the nematode Caenorhabditis elegans, longevity in response to germline ablation, but not in response to reduced insulin/IGF1-like signaling, is strongly dependent on the conserved protein kinase minibrain-related kinase 1 (MBK-1). In humans, the MBK-1 ortholog DYRK1A is associated with a variety of disorders, most prominently with neurological defects observed in Down syndrome. To better understand mbk-1’s physiological roles and their dependence on genetic background, we analyzed the influence of mbk-1 loss on the transcriptomes of wildtype and long-lived, germline-deficient or insulin-receptor defective, C. elegans strains by RNA-sequencing. Results mbk-1 loss elicited global changes in transcription that were less pronounced in insulin-receptor mutant than in germline-deficient or wildtype C. elegans. Irrespective of genetic background, mbk-1 regulated genes were enriched for functions in biological processes related to organic acid metabolism and pathogen defense. qPCR-studies confirmed mbk-1 dependent induction of all three C. elegans Δ9-fatty acid desaturases, fat-5, fat-6 and fat-7, in wildtype, germline-deficient and insulin-receptor mutant strains. Conversely, mbk-1 dependent expression patterns of selected pathogen resistance genes, including asp-12, dod-24 and drd-50, differed across the genetic backgrounds examined. Finally, cth-1 and cysl-2, two genes which connect pathogen resistance to the metabolism of the gaseous messenger and lifespan regulator hydrogen sulfide (H2S), were commonly suppressed by mbk-1 loss only in wildtype and germline-deficient, but not in insulin-receptor mutant C. elegans. Conclusion Our work reveals previously unknown roles of C. elegans mbk-1 in the regulation of fatty acid desaturase- and H2S metabolic-genes. These roles are only partially dependent on genetic background. Considering the particular importance of fatty acid desaturation and H2S for longevity of germline-deficient C. elegans, we propose that these processes at least in part account for the previous observation that mbk-1 preferentially regulates lifespan in these worms.

2021 ◽  
Marco Calabrò ◽  
Concetta Crisafulli

Alzheimer is a complex, multifactorial disease with an ever increasing impact in modern medicine. Research in this area has revealed a lot about the biological and environmental underpinnings of this disease, especially its correlation with Β-Amyloid and Tau related mechanics; however, the precise biological pathways behind the disease are yet to be discovered. Recent studies evidenced how several mechanisms, including neuroinflammation, oxidative stress, autophagy failure and energy production impairments in the brain, −--- have been proposed to contribute to this pathology. In this section we will focus on the role of these molecular pathways and their potential link with Alzheimer Disease.

PLoS Biology ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. e3001510
Gianni M. Castiglione ◽  
Lingli Zhou ◽  
Zhenhua Xu ◽  
Zachary Neiman ◽  
Chien-Fu Hung ◽  

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects a broader range of mammalian species than previously predicted, binding a diversity of angiotensin converting enzyme 2 (ACE2) orthologs despite extensive sequence divergence. Within this sequence degeneracy, we identify a rare sequence combination capable of conferring SARS-CoV-2 resistance. We demonstrate that this sequence was likely unattainable during human evolution due to deleterious effects on ACE2 carboxypeptidase activity, which has vasodilatory and cardioprotective functions in vivo. Across the 25 ACE2 sites implicated in viral binding, we identify 6 amino acid substitutions unique to mouse—one of the only known mammalian species immune to SARS-CoV-2. Substituting human variants at these positions is sufficient to confer binding of the SARS-CoV-2 S protein to mouse ACE2, facilitating cellular infection. Conversely, substituting mouse variants into either human or dog ACE2 abolishes viral binding, diminishing cellular infection. However, these same substitutions decrease human ACE2 activity by 50% and are predicted as pathogenic, consistent with the extreme rarity of human polymorphisms at these sites. This trade-off can be avoided, however, depending on genetic background; if substituted simultaneously, these same mutations have no deleterious effect on dog ACE2 nor that of the rodent ancestor estimated to exist 70 million years ago. This genetic contingency (epistasis) may have therefore opened the road to resistance for some species, while making humans susceptible to viruses that use these ACE2 surfaces for binding, as does SARS-CoV-2.

Sign in / Sign up

Export Citation Format

Share Document