HIV-2 transmembrane protein GP36 binds to human cell surface proteins and inhibits lymphocyte proliferation

1995 ◽  
Vol 121 (S1) ◽  
pp. S34-S34
Author(s):  
Y. -H. Chen ◽  
A. Christiansen ◽  
G. Böck ◽  
M. P. Dierich
1981 ◽  
Vol 88 (3) ◽  
pp. 591-598 ◽  
Author(s):  
JM Kuby ◽  
L Wofsy

An experimental system was developed in which the majority of all lymphocyte cell-surface proteins, regardless of antigenic specificity, could be cross-linked and redistributed in the membrane to determine whether this would induce a corresponding redistribution of intramembrane particles (IMP). Mouse spleen cells were treated with P-diazoniumphenyl- β-D-lactoside (lac) to modify all exposed cell-surface proteins. Extensive azo- coupling was achieved without significantly reducing cell viability or compromising cellular function in mitogen- or antigen-stimulated cultures. When the lac-modified cell- surface proteins were capped with a sandwich of rabbit antilactoside antibody and fluorescein-goat anti-rabbit Ig, freeze-fracture preparations obtained from these cells revealed no obvious redistribution of IMP on the majority of fracture faces. However, detailed analysis showed a statistically significant 35 percent decrease (P less than 0.01) in average IMP density in the E face of the lac-capped spleen cells compared with control cells, whereas a few E-face micrographs showed intense IMP aggregation. In contrast, there was no significant alteration of P-face IMP densities or distribution. Apparently, the majority of E-face IMP and virtually all P-face IMP densities or distribution. Apparently, the majority of E-face IMP and virtually all P-face IMP do not present accessible antigenic sites on the lymphocyte surface and do not associate in a stable manner with surface protein antigens. This finding suggests that IMP, as observed in freeze-fracture analysis, may not comprise a representative reflection of lymphocyte transmembrane protein molecules and complexes because other evidence establishes: (a) that at least some common lymphocyte surface antigens are indeed exposed portions of transmembrane proteins and (b) that the aggregation of molecules of any surface antigen results in altered organization of contractile proteins at the cytoplasmic face of the membrane.


1992 ◽  
Vol 35 (4) ◽  
pp. 283-285 ◽  
Author(s):  
Mauro S. Sandrin ◽  
Hilary A. Vaughan ◽  
Margaret M. Henning ◽  
Heddy Zola ◽  
Ian F. C. McKenzie

Virology ◽  
1983 ◽  
Vol 127 (2) ◽  
pp. 345-360 ◽  
Author(s):  
J. Závada ◽  
Z. Závadová ◽  
G. Russ ◽  
K. Poláková ◽  
J. Rajčáni ◽  
...  

Author(s):  
Watt W. Webb

Plasma membrane heterogeneity is implicit in the existence of specialized cell surface organelles which are necessary for cellular function; coated pits, post and pre-synaptic terminals, microvillae, caveolae, tight junctions, focal contacts and endothelial polarization are examples. The persistence of these discrete molecular aggregates depends on localized restraint of the constituent molecules within specific domaines in the cell surface by strong intermolecular bonds and/or anchorage to extended cytoskeleton. The observed plasticity of many of organelles and the dynamical modulation of domaines induced by cellular signaling evidence evanescent intermolecular interactions even in conspicuous aggregates. There is also strong evidence that universal restraints on the mobility of cell surface proteins persist virtually everywhere in cell surfaces, not only in the discrete organelles. Diffusion of cell surface proteins is slowed by several orders of magnitude relative to corresponding protein diffusion coefficients in isolated lipid membranes as has been determined by various ensemble average methods of measurement such as fluorescence photobleaching recovery(FPR).


2021 ◽  
Vol 7 (4) ◽  
pp. 262
Author(s):  
Anuja Paudyal ◽  
Govindsamy Vediyappan

Candida auris is an emerging antifungal resistant human fungal pathogen increasingly reported in healthcare facilities. It persists in hospital environments, and on skin surfaces, and can form biofilms readily. Here, we investigated the cell surface proteins from C. auris biofilms grown in a synthetic sweat medium mimicking human skin conditions. Cell surface proteins from both biofilm and planktonic control cells were extracted with a buffer containing β-mercaptoethanol and resolved by 2-D gel electrophoresis. Some of the differentially expressed proteins were excised and identified by mass spectrometry. C. albicans orthologs Spe3p, Tdh3p, Sod2p, Ywp1p, and Mdh1p were overexpressed in biofilm cells when compared to the planktonic cells of C. auris. Interestingly, several proteins with zinc ion binding activity were detected. Nrg1p is a zinc-binding transcription factor that negatively regulates hyphal growth in C. albicans. C. auris does not produce true hypha under standard in vitro growth conditions, and the role of Nrg1p in C. auris is currently unknown. Western blot analyses of cell surface and cytosolic proteins of C. auris against anti-CalNrg1 antibody revealed the Nrg1p in both locations. Cell surface localization of Nrg1p in C. auris, an unexpected finding, was further confirmed by immunofluorescence microscopy. Nrg1p expression is uniform across all four clades of C. auris and is dependent on growth conditions. Taken together, the data indicate that C. auris produces several unique proteins during its biofilm growth, which may assist in the skin-colonizing lifestyle of the fungus during its pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document