candida auris
Recently Published Documents


TOTAL DOCUMENTS

946
(FIVE YEARS 714)

H-INDEX

49
(FIVE YEARS 20)

Author(s):  
Shannon Kilburn ◽  
Gabriel Innes ◽  
Monica Quinn ◽  
Karen Southwick ◽  
Belinda Ostrowsky ◽  
...  

About 55% of U.S. Candida auris clinical cases were reported from New York and New Jersey from 2016 through 2020. Nearly all New York-New Jersey clinical isolates (99.8%) were fluconazole resistant, and 50% were amphotericin B resistant. Echinocandin resistance increased from 0% to 4% and pan-resistance increased from 0 to <1% for New York C. auris clinical isolates but not for New Jersey, highlighting the regional differences.


Author(s):  
Shawn R. Lockhart ◽  
Meghan M. Lyman ◽  
D. Joseph Sexton

Candida auris is an emerging yeast species that has the unique characteristics of patient skin colonization and rapid transmission within healthcare facilities and the ability to rapidly develop antifungal resistance. When C. auris first started appearing in clinical microbiology laboratories, it could only be identified using DNA sequencing. In the decade since its first identification outside of Japan there have been many improvements in the detection of C. auris . These include the expansion of MALDI-TOF databases to include C. auris , the development of both laboratory-developed tests and commercially available kits for its detection, and special CHROMagar for identification from laboratory specimens. Here we discuss the current tools and resources that are available for C. auris identification and detection.


2022 ◽  
Vol 9 (1) ◽  
pp. 110-116
Author(s):  
Galon et al. ◽  

Escherichia coli and Candida auris are not easy to identify in laboratories without special technology. In this study, we have presented microfluidic designs for trapping bacteria and fungi. Two trapping chambers are designed using AutoCAD and the fluid dynamics of the bacteria and fungi are simulated using D. Schroeder’s Fluid Dynamics Simulation software. The designs are modified versions of a device that is constructed and simulated with numerical predictions, which include sizes and apertures in consideration of the specified microbe. The current designs take into account the exact dimensions of E. coli and C. auris under fluid flow and passive microfluidic technique, where actuation is based on geometry, is considered. The measurements of the design ensure that the species are to be trapped due to diffusion and ¬¬fluid dynamics. From the simulation, the stagnation is to be shown with its default setting, and approximation is done in its motion which is simulated in the two-dimensional space of the bacteria and fungi. The microfluidic designs will be useful during experiments in deciphering necessary information of the bacteria and fungi and will be a platform in modeling numerous biomedical assays and in the optimization of biophysical tools.


2022 ◽  
pp. 245-251
Author(s):  
Débora de Sousa Rodrigues ◽  
Ana Caroline Ferreira Oviedo Ramirez ◽  
Anna Júlia Arraes Alves de Souza ◽  
Davi Carlos Fernandes Leyva ◽  
James Bruno Gaston ◽  
...  
Keyword(s):  

Antibiotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Elisabetta de Alteriis ◽  
Angela Maione ◽  
Annarita Falanga ◽  
Rosa Bellavita ◽  
Stefania Galdiero ◽  
...  

The high virulence of Candida auris, a pathogen fungus considered as a global threat for public health, is due to its peculiar traits such as its intrinsic resistance to conventional antifungals. Its biofilm lifestyle certainly promotes the prolonged survival of C. auris after disinfection or antifungal treatments. In this work, for the first time, we detected persister cells in a biofilm of C. auris in a microwell plate model, following caspofungin treatment. Furthermore, we showed how persisters can progressively develop a new biofilm in situ, mimicking the re-colonization of a surface which may be responsible for recalcitrant infections. Plant-derived compounds, such as essential oils, may represent a valid alternative to combat fungal infections. Here, Lavandula angustifolia essential oil, as free or encapsulated in liposomes, was used to eradicate primary and persister-derived biofilms of C. auris, confirming the great potential of alternative compounds against emergent fungal pathogens. As in other Candida species, the action of essential oils against C. auris involves ROS production and affects the expression of some biofilm-related genes.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Husam Salah ◽  
Sathyavathi Sundararaju ◽  
Lamya Dalil ◽  
Patrick Tang ◽  
Walid Al-Wali ◽  
...  

Candida auris is an emerging, multidrug resistant fungal pathogen that has become a public health threat worldwide. Candida auris spreads easily among patients within and between hospitals, and the incidence of infections has increased substantially in the last decade. Multiple C. auris outbreaks have been reported worldwide including India, USA and United Kingdom. Infections and outbreaks caused by C. auris have also been reported in the Middle East region including Kuwait, Oman, Saudi Arabia, and Qatar; however, the origin of these isolates is largely unknown. This study uses whole genome sequencing (WGS) data to determine the epidemiology and the drug resistance mutations from C. auris in Qatar. Forty samples isolated from the patients and the hospital environment were sequenced by Illumina Nextseq. Core genome SNPs revealed that all isolates belonged to the Indian lineage, which could be originated from the expatriate labour from South Asia. The genetic variability among the isolates was low but comprised of more than one genetic cluster. The environmental isolates were identical to the clinical isolates, and the isolates from patients of different hospitals/outbreaks clustered together, suggesting the transmission of C. auris could be linked to infected/colonized patients and the hospital environment. Mutations associated with azole and echinocandin resistance were discussed.


Sign in / Sign up

Export Citation Format

Share Document