Role of reactive oxygen species for apoptosis of transformed cells induced by TGF-β-treated normal cells

1995 ◽  
Vol 121 (S1) ◽  
pp. A29-A29
Author(s):  
J. M. Jürgensmeier ◽  
C. Langer ◽  
G. Bauer
2020 ◽  
Vol 21 (5) ◽  
pp. 477-498
Author(s):  
Yongfeng Chen ◽  
Xingjing Luo ◽  
Zhenyou Zou ◽  
Yong Liang

Reactive oxygen species (ROS), an important molecule inducing oxidative stress in organisms, play a key role in tumorigenesis, tumor progression and recurrence. Recent findings on ROS have shown that ROS can be used to treat cancer as they accelerate the death of tumor cells. At present, pro-oxidant drugs that are intended to increase ROS levels of the tumor cells have been widely used in the clinic. However, ROS are a double-edged sword in the treatment of tumors. High levels of ROS induce not only the death of tumor cells but also oxidative damage to normal cells, especially bone marrow hemopoietic cells, which leads to bone marrow suppression and (or) other side effects, weak efficacy of tumor treatment and even threatening patients’ life. How to enhance the killing effect of ROS on tumor cells while avoiding oxidative damage to the normal cells has become an urgent issue. This study is a review of the latest progress in the role of ROS-mediated programmed death in tumor treatment and prevention and treatment of oxidative damage in bone marrow induced by ROS.


2008 ◽  
Vol 21 (12) ◽  
pp. 1561-1570 ◽  
Author(s):  
Victor P. Bulgakov ◽  
Dmitry L. Aminin ◽  
Yuri N. Shkryl ◽  
Tatiana Y. Gorpenchenko ◽  
Galina N. Veremeichik ◽  
...  

It is known that expression of the Agrobacterium rhizogenes rolC gene in transformed plant cells causes defense-like reactions, such as increased phytoalexin production and expression of pathogenesis-related proteins. In the present study, we examined whether this phenomenon is associated with increased production of reactive oxygen species (ROS). Single-cell assays based on confocal microscopy and fluorogenic dyes (2,7-dichlorofluorescein diacetate and dihydrorhodamine 123) showed reduced steady-state levels of ROS in rolC-expressing Rubia cordifolia cells as compared with normal cells. Paraquat, a ROS inducer, caused significant ROS elevation in normal cells but had little effect on rolC-transformed cells. Likewise, ROS elevation triggered by a light stress was suppressed in transformed cells. Our results indicate that the rolC gene acts as a ROS suppressor in unstressed cells and its expression prevents stress-induced ROS elevations. We detected a two- to threefold increase in tolerance of rolC-transformed cells to salt, heat, and cold treatments. Simultaneously, rolC-transformed cells maintained permanently active defensive status, as found by measuring isochorismate synthase gene expression and anthraquinone production. Thus, the oncogene provoked multiple effects in which ROS production and phytoalexin production were clearly dissociated.


1999 ◽  
Vol 6 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Antonio Macho ◽  
Marco A Calzado ◽  
Juan Muñoz-Blanco ◽  
Consuelo Gómez-Díaz ◽  
Consuelo Gajate ◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Andrey Krylatov ◽  
Leonid Maslov ◽  
Sergey Y. Tsibulnikov ◽  
Nikita Voronkov ◽  
Alla Boshchenko ◽  
...  

: There is considerable evidence in the heart that autophagy in cardiomyocytes is activated by hypoxia/reoxygenation (H/R) or in hearts by ischemia/reperfusion (I/R). Depending upon the experimental model and duration of ischemia, increases in autophagy in this setting maybe beneficial (cardioprotective) or deleterious (exacerbate I/R injury). Aside from the conundrum as to whether or not autophagy is an adaptive process, it is clearly regulated by a number of diverse molecules including reactive oxygen species (ROS), various kinases, hydrogen sulfide (H2S) and nitric oxide (NO). The purpose this review is to address briefly the controversy regarding the role of autophagy in this setting and to examine a variety of disparate molecules that are involved in its regulation.


Sign in / Sign up

Export Citation Format

Share Document