On the singular ideals of inverse semigroup algebras

1983 ◽  
Vol 26 (1) ◽  
pp. 375-377 ◽  
Author(s):  
W. D. Munn
2004 ◽  
Vol 104 (2) ◽  
pp. 211-218 ◽  
Author(s):  
M. J. Crabb ◽  
J. Duncan ◽  
C. M. McGregor

2019 ◽  
Vol 101 (3) ◽  
pp. 488-495
Author(s):  
HOGER GHAHRAMANI

Let $S$ be a discrete inverse semigroup, $l^{1}(S)$ the Banach semigroup algebra on $S$ and $\mathbb{X}$ a Banach $l^{1}(S)$-bimodule which is an $L$-embedded Banach space. We show that under some mild conditions ${\mathcal{H}}^{1}(l^{1}(S),\mathbb{X})=0$. We also provide an application of the main result.


Author(s):  
W. D. Munn

AbstractIt is shown that every element of the complex contracted semigroup algebra of an inverse semigroup S = S0 has a Moore-Penrose inverse, with respect to the natural involution, if and only if S is locally finite. In particular, every element of a complex group algebra has such an inverse if and only if the group is locally finite.


1995 ◽  
Vol 125 (5) ◽  
pp. 1077-1084 ◽  
Author(s):  
M. J. Crabb ◽  
W. D. Munn

A construction is given for a trace function on the semigroup algebra of a certain type of E-unitary inverse semigroup over any subfield of the complex field that is closed under complex conjugation. In particular, the method applies to the semigroup algebras of free inverse semigroups of arbitrary rank.


Filomat ◽  
2015 ◽  
Vol 29 (4) ◽  
pp. 787-793
Author(s):  
Abbas Sahleh ◽  
Somaye Tanha

In this article, weshow that module amenability with the canonical action of restricted semigroup algebra l1r (S) and semigroup algebra l1(Sr) are equivalent, where Sr is the restricted semigroup of associated to the inverse semigroup S. We use this to give a characterization of module amenability of restricted semigroup algebra l1r (S) with the canonical action, where S is a Clifford semigroup.


2010 ◽  
Vol 223 (2) ◽  
pp. 689-727 ◽  
Author(s):  
Benjamin Steinberg

2010 ◽  
Vol 81 (2) ◽  
pp. 269-276 ◽  
Author(s):  
E. Nasrabadi ◽  
A. Pourabbas

Author(s):  
W. D. Munn

SynopsisLet S be an inverse semigroup and F a field. It is shown that if F has characteristic 0 and is not algebraic over its prime subfield then the algebra of S over F is semiprimitive (i.e. Jacobson semisimple). This generalises a well-known theorem on group algebras due to Amitsur. Similar results for the case in which F has prime characteristic are obtained under the additional hypotheses that S is completely semisimple or that S is E-unitary with a totally ordered semilattice.


Sign in / Sign up

Export Citation Format

Share Document