Characterization of periodic multiresolution analysis and an application

1998 ◽  
Vol 14 (4) ◽  
pp. 547-554 ◽  
Author(s):  
Li Dengfeng ◽  
Peng Silong
2021 ◽  
Vol 7 (1) ◽  
pp. 3
Author(s):  
Ishtaq Ahmed ◽  
Owias Ahmad ◽  
Neyaz Ahmad Sheikh

In real life application all signals are not obtained from uniform shifts; so there is a natural question regarding analysis and decompositions of these types of signals by a stable mathematical tool.  This gap was filled by Gabardo and Nashed [11]   by establishing a constructive algorithm based on the theory of spectral pairs for constructing non-uniform wavelet basis in \(L^2(\mathbb R)\). In this setting, the associated translation set \(\Lambda =\left\{ 0,r/N\right\}+2\,\mathbb Z\) is no longer a discrete subgroup of \(\mathbb R\) but a spectrum associated with a certain one-dimensional spectral pair and the associated dilation is an even positive integer related to the given spectral pair. In this paper, we characterize the scaling function for non-uniform multiresolution analysis on local fields of positive characteristic (LFPC). Some properties of wavelet scaling function associated with non-uniform multiresolution analysis (NUMRA) on LFPC are also established.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Firdous A. Shah

We present a notion of frame multiresolution analysis on local fields of positive characteristic based on the theory of shift-invariant spaces. In contrast to the standard setting, the associated subspace V0 of L2(K) has a frame, a collection of translates of the scaling function φ of the form φ(·-u(k)):k∈N0, where N0 is the set of nonnegative integers. We investigate certain properties of multiresolution subspaces which provides the quantitative criteria for the construction of frame multiresolution analysis (FMRA) on local fields of positive characteristic. Finally, we provide a characterization of wavelet frames associated with FMRA on local field K of positive characteristic using the shift-invariant space theory.


1999 ◽  
Vol 42 (2) ◽  
pp. 225-242 ◽  
Author(s):  
Jürgen Prestin ◽  
Ewald Quak

In this paper, it is shown that certain Theta functions are asymptotically optimal for the periodic time frequency uncertainty principle described by Breitenberger in [3]. These extremal functions give rise to a periodic multiresolution analysis where the corresponding wavelets also show similar localization properties.


Sign in / Sign up

Export Citation Format

Share Document