shift invariant spaces
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 30)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 13 (1) ◽  
pp. 23-44
Author(s):  
Owais Ahmad ◽  
Mobin Ahmad ◽  
Neyaz Ahmad

Abstract In this paper, we introduce the notion of Walsh shift-invariant space and present a unified approach to the study of shift-invariant systems to be frames in L2(ℝ+). We obtain a necessary condition and three sufficient conditions under which the Walsh shift-invariant systems constitute frames for L2(ℝ+). Furthermore, we discuss applications of our main results to obtain some known conclusions about the Gabor frames and wavelet frames on positive half line.


2021 ◽  
Vol 118 ◽  
pp. 107131
Author(s):  
Rui Li ◽  
Bei Liu ◽  
Qingyue Zhang

2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Maria Charina ◽  
Vladimir Yu. Protasov

AbstractIn this paper we characterize all subspaces of analytic functions in finitely generated shift-invariant spaces with compactly supported generators and provide explicit descriptions of their elements. We illustrate the differences between our characterizations and Strang-Fix or zero conditions on several examples. Consequently, we depict the analytic functions generated by scalar or vector subdivision with masks of bounded and unbounded support. In particular, we prove that exponential polynomials are indeed the only analytic limits of level dependent scalar subdivision schemes with finitely supported masks.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
José Luis Romero

AbstractWe show that a real-valued function f in the shift-invariant space generated by a totally positive function of Gaussian type is uniquely determined, up to a sign, by its absolute values $$\{|f(\lambda )|: \lambda \in \Lambda \}$$ { | f ( λ ) | : λ ∈ Λ } on any set $$\Lambda \subseteq {\mathbb {R}}$$ Λ ⊆ R with lower Beurling density $$D^{-}(\Lambda )>2$$ D - ( Λ ) > 2 .We consider a totally positive function of Gaussian type, i.e., a function $$g \in L^2({\mathbb {R}})$$ g ∈ L 2 ( R ) whose Fourier transform factors as $$\begin{aligned} \hat{g}(\xi )= \int _{{\mathbb {R}}} g(x) e^{-2\pi i x \xi } dx = C_0 e^{- \gamma \xi ^2}\prod _{\nu =1}^m (1+2\pi i\delta _\nu \xi )^{-1}, \quad \xi \in {\mathbb {R}}, \end{aligned}$$ g ^ ( ξ ) = ∫ R g ( x ) e - 2 π i x ξ d x = C 0 e - γ ξ 2 ∏ ν = 1 m ( 1 + 2 π i δ ν ξ ) - 1 , ξ ∈ R , with $$\delta _1,\ldots ,\delta _m\in {\mathbb {R}}, C_0, \gamma >0, m \in {\mathbb {N}} \cup \{0\}$$ δ 1 , … , δ m ∈ R , C 0 , γ > 0 , m ∈ N ∪ { 0 } , and the shift-invariant space$$\begin{aligned} V^\infty (g) = \Big \{ f=\sum _{k \in {\mathbb {Z}}} c_k\, g(\cdot -k): c \in \ell ^\infty ({\mathbb {Z}}) \Big \}, \end{aligned}$$ V ∞ ( g ) = { f = ∑ k ∈ Z c k g ( · - k ) : c ∈ ℓ ∞ ( Z ) } , generated by its integer shifts within $$L^\infty ({\mathbb {R}})$$ L ∞ ( R ) . As a consequence of (1), each $$f \in V^\infty (g)$$ f ∈ V ∞ ( g ) is continuous, the defining series converges unconditionally in the weak$$^*$$ ∗ topology of $$L^\infty $$ L ∞ , and the coefficients $$c_k$$ c k are unique [6, Theorem 3.5].


Optik ◽  
2021 ◽  
Vol 227 ◽  
pp. 165892
Author(s):  
Shuiqing Xu ◽  
Li Feng ◽  
Yigang He ◽  
Yi Chai

Sign in / Sign up

Export Citation Format

Share Document