the scaling function
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 5 (4) ◽  
pp. 255
Author(s):  
Yaswanth Sai Jetti ◽  
Martin Ostoja-Starzewski

The scale dependence of the effective anti-plane shear modulus response in microstructures with statistical ergodicity and spatial wide-sense stationarity is investigated. In particular, Cauchy and Dagum autocorrelation functions which can decouple the fractal and the Hurst effects are used to describe the random shear modulus fields. The resulting stochastic boundary value problems (BVPs) are set up in line with the Hill–Mandel condition of elastostatics for different sizes of statistical volume elements (SVEs). These BVPs are solved using a physics-based cellular automaton (CA) method that is applicable for anti-plane elasticity to study the scaling of SVEs towards a representative volume element (RVE). This progression from SVE to RVE is described through a scaling function, which is best approximated by the same form as the Cauchy and Dagum autocorrelation functions. The scaling function is obtained by fitting the scaling data from simulations conducted over a large number of random field realizations. The numerical simulation results show that the scaling function is strongly dependent on the fractal dimension D, the Hurst parameter H, and the mesoscale δ, and is weakly dependent on the autocorrelation function. Specifically, it is found that a larger D and a smaller H results in a higher rate of convergence towards an RVE with respect to δ.


2021 ◽  
Vol 2122 (1) ◽  
pp. 012009
Author(s):  
Wolfhard Janke ◽  
Suman Majumder ◽  
Subir K. Das

Abstract We study kinetics of phase segregation in multicomponent mixtures via Monte Carlo simulations of the q-state Potts model, in two spatial dimensions, for 2 ≤ q ≤ 20. The associated growth of domains in finite boxes, irrespective of q and temperature, can be described by a single universal finite-size scaling function, with only the introduction of a nonuniversal metric factor in the scaling variable. Our results show that although the scaling function is independent of the type of transition, the q-dependence of the metric factor hints to a crossover at q = 5 where the type of transition in the model changes from second to first order.


Author(s):  
Neil D. Dizon ◽  
Jeffrey A. Hogan ◽  
Joseph D. Lakey

We present an optimization approach to wavelet architecture that hinges on the Zak transform to formulate the construction as a minimization problem. The transform warrants parametrization of the quadrature mirror filter in terms of the possible integer sample values of the scaling function and the associated wavelet. The parameters are predicated to satisfy constraints derived from the conditions of regularity, compact support and orthonormality. This approach allows for the construction of nearly cardinal scaling functions when an objective function that measures deviation from cardinality is minimized. A similar objective function based on a measure of symmetry is also proposed to facilitate the construction of nearly symmetric scaling functions on the line.


Geophysics ◽  
2021 ◽  
pp. 1-39
Author(s):  
Mahak Singh Chauhan ◽  
Ivano Pierri ◽  
Mrinal K. Sen ◽  
Maurizio FEDI

We use the very fast simulated annealing algorithm to invert the scaling function along selected ridges, lying in a vertical section formed by upward continuing gravity data to a set of altitudes. The scaling function is formed by the ratio of the field derivative by the field itself and it is evaluated along the lines formed by the zeroes of the horizontal field derivative at a set of altitudes. We also use the same algorithm to invert gravity anomalies only at the measurement altitude. Our goal is analyzing the different models obtained through the two different inversions and evaluating the relative uncertainties. One main difference is that the scaling function inversion is independent on density and the unknowns are the geometrical parameters of the source. The gravity data are instead inverted for the source geometry and the density simultaneously. A priori information used for both the inversions is that the source has a known depth to the top. We examine the results over the synthetic examples of a salt dome structure generated by Talwani’s approach and real gravity datasets over the Mors salt dome and the Decorah (USA) basin. For all these cases, the scaling function inversion yielded models with a better sensitivity to specific features of the sources, such as the tilt of the body, and reduced uncertainty. We finally analyzed the density, which is one of the unknowns for the gravity inversion and it is estimated from the geometric model for the scaling function inversion. The histograms over the density estimated at many iterations show a very concentrated distribution for the scaling function, while the density contrast retrieved by the gravity inversion, according to the fundamental ambiguity density/volume, is widely dispersed, this making difficult to assess its best estimate.


2021 ◽  
Vol 10 (2) ◽  
pp. 17
Author(s):  
Nabiha Haouas

The present study focus on the multifractal analysis of the exchange rate for Middle East North Africa (MENA) region from January 1999 to May 2017. The purpose of this paper is to examine the behavior of currency markets and to verify the efficiency hypothesis of FOREX market for these countries. We first estimate the scaling function to detect the multifractal character of each series and then the Hölder exponent, using the Generalized Quadratic Variation (GQV) method, as a function of time H(t). We conclude that there's a multifractal character for all these countries with a difference in the degree of persistence of each market.


2019 ◽  
Vol 61 (7) ◽  
pp. 1792-1796 ◽  
Author(s):  
Cheol‐Ho Choi ◽  
Jae‐Hyun Park ◽  
Ha‐Neul Lee ◽  
Jong‐Ryul Yang

2016 ◽  
Vol 59 (3) ◽  
pp. 528-541 ◽  
Author(s):  
Qaiser Jahan

AbstractIn this article, we give necessary and sufficient conditions on a function to be a low-pass filter on a local field K of positive characteristic associated with the scaling function for multiresolution analysis of L2(K). We use probability and martingale methods to provide such a characterization.


Sign in / Sign up

Export Citation Format

Share Document