The effect of aging and cold working on the high-temperature low-cycle fatigue behavior of alloy 800h: part ii: continuous cyclic loading

1981 ◽  
Vol 12 (11) ◽  
pp. 1849-1857 ◽  
Author(s):  
R. E. Villagrana ◽  
J. L. Kaae ◽  
J. R. Ellis
2018 ◽  
Vol 33 (12) ◽  
pp. 1814-1821 ◽  
Author(s):  
Ankur Chauhan ◽  
Dimitri Litvinov ◽  
Tim Gräning ◽  
Jarir Aktaa

Abstract


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Richard A. Barrett ◽  
Eimear M. O'Hara ◽  
Padraic E. O'Donoghue ◽  
Sean B. Leen

This paper presents the high-temperature low-cycle fatigue (HTLCF) behavior of a precipitate strengthened 9Cr martensitic steel, MarBN, designed to provide enhanced creep strength and precipitate stability at high temperature. The strain-controlled test program addresses the cyclic effects of strain-rate and strain-range at 600 °C, as well as tensile stress-relaxation response. A recently developed unified cyclic viscoplastic material model is implemented to characterize the complex cyclic and relaxation plasticity response, including cyclic softening and kinematic hardening effects. The measured response is compared to that of P91 steel, a current power plant material, and shows enhanced cyclic strength relative to P91.


Sign in / Sign up

Export Citation Format

Share Document