mg alloys
Recently Published Documents


TOTAL DOCUMENTS

2690
(FIVE YEARS 506)

H-INDEX

82
(FIVE YEARS 15)

2022 ◽  
Vol 210 ◽  
pp. 114422
Author(s):  
Jun Wang ◽  
Mahmoud Reza Ghandehari Ferdowsi ◽  
Sitarama Raju Kada ◽  
Steven Babaniaris ◽  
Bevis Hutchinson ◽  
...  

2022 ◽  
Vol 30 ◽  
pp. 101759
Author(s):  
Que Huang ◽  
Shuo Yu ◽  
Yanjun Chen ◽  
Song Lu ◽  
Zhumao Lu ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 627
Author(s):  
Junxiu Chen ◽  
Jie Zhan ◽  
Sharafadeen Kunle Kolawole ◽  
Lili Tan ◽  
Ke Yang ◽  
...  

Effects of different rare earth elements on the degradation and mechanical properties of the ECAP (equal channel angular pressing) extruded Mg alloys were investigated in this work. Microstructural characterization, thermodynamic calculation, a tensile test, an electrochemical test, an immersion test, a hydrogen evolution test and a cytotoxicity test were carried out. The results showed that yttrium addition was beneficial to the improvement of the alloy’s strength, and the ultimate tensile strength (UTS) and yield strength (YS) values of the ECAPed Mg-2Zn-0.5Y-0.5Zr alloy reached 315 MPa and 295 MPa, respectively. In addition, Nd was beneficial to the corrosion resistance, for which, the corrosion rate of the ECAPed Mg-2Zn-0.5Nd-0.5Zr alloy was observed to be 0.42 ± 0.04 mm/year in Hank’s solution after 14 days of immersion. Gd was moderate in improving both the corrosion resistance and mechanical properties. Moreover, after co-culturing with murine calvarial preosteoblasts (MC3T3-E1) cells, the ECAPed Mg-2Zn-0.5RE (Nd, Gd, Y)-0.5Zr alloys exhibited good cytocompatibility with a grade 1 cytotoxicity. Consequently, the ECAPed Mg-2Zn-0.5Nd-0.5Zr alloy showed the best application prospect in the field of orthopedics.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 417
Author(s):  
Hanna Nilsson Åhman ◽  
Lena Thorsson ◽  
Pelle Mellin ◽  
Greta Lindwall ◽  
Cecilia Persson

Powder Bed Fusion–Laser Beam (PBF–LB) processing of magnesium (Mg) alloys is gaining increasing attention due to the possibility of producing complex biodegradable implants for improved healing of large bone defects. However, the understanding of the correlation between the PBF–LB process parameters and the microstructure formed in Mg alloys remains limited. Thus, the purpose of this study was to enhance the understanding of the effect of the PBF–LB process parameters on the microstructure of Mg alloys by investigating the applicability of computational thermodynamic modelling and verifying the results experimentally. Thus, PBF–LB process parameters were optimized for a Mg WE43 alloy (Mg-Y3.9 wt%-Nd3 wt%-Zr0.5 wt%) on a commercially available machine. Two sets of process parameters successfully produced sample densities > 99.4%. Thermodynamic computations based on the Calphad method were employed to predict the phases present in the processed material. Phases experimentally established for both processing parameters included α-Mg, Y2O3, Mg3Nd, Mg24Y5 and hcp-Zr. Phases α-Mg, Mg24Y5 and hcp-Zr were also predicted by the calculations. In conclusion, the extent of the applicability of thermodynamic modeling was shown, and the understanding of the correlation between the PBF–LB process parameters and the formed microstructure was enhanced, thus increasing the viability of the PBF–LB process for Mg alloys.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Murtatha M. Jamel ◽  
Mostafa M. Jamel ◽  
Hugo F. Lopez

The increased demand for alloys that can serve as implantation devices with outstanding bio-properties has led to the development of numerous biomedical Mg-based alloys. These alloys have been extensively investigated for their performance in living tissue with mixed results. Hence, there are still major concerns regarding the use of magnesium alloys for such applications. Among the issues raised are elevated corrosion rates, hydrogen generation, and the maintenance of mechanical integrity for designated healing times. In addition, toxicity can arise from the addition of alloying elements that are intended to improve the mechanical integrity and corrosion resistance of Mg alloys. The current work reviews the recent advances in the development of Mg alloys for applications as bio-absorbable materials in living organic environments. In particular, it attempts to develop a roadmap of effective factors that can be utilized when designing Mg alloys. Among the factors reviewed are the effects of alloying additions and processing methods on the exhibited mechanical properties and corrosion rates in simulated bio-fluids used in biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document