On the development of crack closure and the threshold condition for short and long fatigue cracks in 7150 aluminum alloy

1985 ◽  
Vol 16 (8) ◽  
pp. 1467-1477 ◽  
Author(s):  
E. Zaiken ◽  
R. O. Ritchie
2017 ◽  
Vol 2017 (4) ◽  
pp. 322-329 ◽  
Author(s):  
L. R. Botvina ◽  
G. I. Nesterenko ◽  
A. P. Soldatenkov ◽  
Yu. A. Demina ◽  
A. A. Sviridov

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1656
Author(s):  
Mansur Ahmed ◽  
Md. Saiful Islam ◽  
Shuo Yin ◽  
Richard Coull ◽  
Dariusz Rozumek

This paper investigated the fatigue crack propagation mechanism of CP Ti at various stress amplitudes (175, 200, 227 MPa). One single crack at 175 MPa and three main cracks via sub-crack coalescence at 227 MPa were found to be responsible for fatigue failure. Crack deflection and crack branching that cause roughness-induced crack closure (RICC) appeared at all studied stress amplitudes; hence, RICC at various stages of crack propagation (100, 300 and 500 µm) could be quantitatively calculated. Noticeably, a lower RICC at higher stress amplitudes (227 MPa) for fatigue cracks longer than 100 µm was found than for those at 175 MPa. This caused the variation in crack growth rates in the studied conditions.


1976 ◽  
Vol 98 (1) ◽  
pp. 24-29 ◽  
Author(s):  
D. L. Davidson ◽  
J. Lankford

The techniques of selected area electron channeling and positive replica examination have been used to study the plastic zones attending fatigue crack propagation in 304 SS, 6061-T6 aluminum alloy, and Fe-3Si steel. These observations allowed the strain distribution at the crack tip to be determined. The results indicate that the concepts of a monotonic and a cyclic plastic zone are essentially correct, with the strains at demarcation between these two zones being 3 to 6 percent. Strain distribution varies as r−1/2 in the cyclic zone and as ln r in the monotonic plastic zone. The strain distributions for all materials studied may be made approximately coincident by using a dimensionless parameter related to distance from the crack tip.


Author(s):  
James C. Newman ◽  
Balkrishna S. Annigeri

Plasticity effects and crack-closure modeling of small fatigue cracks were used on a Ti-6Al-4V alloy to calculate fatigue lives under various constant-amplitude loading conditions (negative to positive stress ratios, R) on notched and un-notched specimens. Fatigue test data came from a high-cycle-fatigue study by the U.S. Air Force and a metallic materials properties handbook. A crack-closure model with a cyclic-plastic-zone-corrected effective stress-intensity factor range and equivalent-initial-flaw-sizes (EIFS) were used to calculate fatigue lives using only crack-growth-rate data. For un-notched specimens, EIFS values were 25-μm; while for notched specimens, the EIFS values ranged from 6 to 12 μm for positive stress ratios and 25-μm for R = −1 loading. Calculated fatigue lives under a wide-range of constant-amplitude loading conditions agreed fairly well with the test data from low- to high-cycle fatigue conditions.


2014 ◽  
Vol 488-489 ◽  
pp. 66-69
Author(s):  
Xu Dong Li ◽  
Zeng Jie Cai ◽  
Zhi Tao Mu

This paper investigates the growth behavior of fatigue cracks initiated at corrosion pits in laboratory coupons of LC9 aluminum alloy subjected to a transport aircraft loading spectrum. Corrosion pits were introduced by exposing the coupons to EXCO solution for a variety of periods to produce corrosion damage varying from mild to severe. In general, the presence of corrosion damage reduced the fatigue lives of components to a severe extent. It was found that the depth of the corrosion pit was a suitable parameter for characterizing the corrosion damage and for predicting the fatigue life of the coupons using commercial fatigue crack growth software


Sign in / Sign up

Export Citation Format

Share Document