crack growth behaviour
Recently Published Documents


TOTAL DOCUMENTS

498
(FIVE YEARS 47)

H-INDEX

31
(FIVE YEARS 5)

Author(s):  
Unai De Francisco ◽  
Felix Beckmann ◽  
Julian Moosmann ◽  
Nicolas O. Larrosa ◽  
Matthew J. Peel

AbstractIn this investigation, synchrotron X-ray microtomography was used to perform 3D in situ observations of crack initiation and growth during hydrogen environmentally assisted cracking (HEAC) in tensile samples of AA7449-T7651. Two smooth tensile samples with a 1 mm diameter gauge section were held at a fixed displacement ($$\approx 30$$ ≈ 30 % of yield stress) in warm, moist air ($$\approx 76\,^\circ $$ ≈ 76 ∘ C, 73% relative humidity). The samples were then imaged repeatedly using X-ray tomography until they fractured completely. The tomograms showing the nucleation and evolution of intergranular cracks were correlated with electron microscopy fractographs. This enabled the identification of crack initiation sites and the characterisation of the crack growth behaviour relative to the microstructure. The samples were found to fracture within an environmental exposure time of 240 min. Some cracks in both samples nucleated within an exposure time of 80 min (33–40% of the total lifetime). Many cracks were found to nucleate both internally and at the sample surface. However, only superficial cracks contributed to the final fracture surface as they grew faster owing to the direct environmental exposure and the larger crack opening. HEAC occurred prominently via brittle intergranular cracking, and cracks were found to slow down when approaching grain boundary triple junctions. Additionally, crack shielding from nearby cracks and the presence of coarse Al–Cu–Fe particles at the grain boundaries were also found to temporarily reduce the crack growth rates. After prolonged crack growth, the HEAC cracks displayed ductile striations and transgranular fracture, revealing a change in the crack growth mechanism at higher stress intensity factors.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1656
Author(s):  
Mansur Ahmed ◽  
Md. Saiful Islam ◽  
Shuo Yin ◽  
Richard Coull ◽  
Dariusz Rozumek

This paper investigated the fatigue crack propagation mechanism of CP Ti at various stress amplitudes (175, 200, 227 MPa). One single crack at 175 MPa and three main cracks via sub-crack coalescence at 227 MPa were found to be responsible for fatigue failure. Crack deflection and crack branching that cause roughness-induced crack closure (RICC) appeared at all studied stress amplitudes; hence, RICC at various stages of crack propagation (100, 300 and 500 µm) could be quantitatively calculated. Noticeably, a lower RICC at higher stress amplitudes (227 MPa) for fatigue cracks longer than 100 µm was found than for those at 175 MPa. This caused the variation in crack growth rates in the studied conditions.


ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 1145-1152
Author(s):  
Thomas Riedel ◽  
Lars Sieber ◽  
Holger Flederer

Author(s):  
Anna Ermakova ◽  
Ali Mehmanparast ◽  
Supriyo Ganguly ◽  
Javad Razavi ◽  
Filippo Berto

AbstractThe new emerging Wire and Arc Additive Manufacturing (WAAM) technology has significant potential to improve material design and efficiency for structural components as well as reducing manufacturing costs. Due to repeated and periodic melting, solidification and reheating of the layers, the WAAM deposition technique results in some elastic, plastic and viscous deformations that can affect material degradation and crack propagation behaviour in additively manufactured components. Therefore, it is crucial to characterise the cracking behaviour in WAAM built components for structural design and integrity assessment purposes. In this work, fatigue crack growth tests have been conducted on compact tension specimens extracted from ER70S-6 steel WAAM built components. The crack propagation behaviour of the specimens extracted with different orientations (i.e. horizontal and vertical with respect to the deposition direction) has been characterised under two different cyclic load levels. The obtained fatigue crack growth rate data have been correlated with the linear elastic fracture mechanics parameter $$\varDelta K$$ Δ K and the results are compared with the literature data available for corresponding wrought structural steels and the recommended fatigue crack growth trends in the BS7910 standard. The obtained results have been found to fall below the recommended trends in the BS7910 standard and above the data points obtained from S355 wrought material. The obtained fatigue growth trends and Paris law constants from this study contribute to the overall understanding of the design requirements for the new optimised functionally graded structures fabricated using the WAAM technique.


Author(s):  
Abdul Khadar Syed ◽  
Xiang Zhang ◽  
Alec E. Davis ◽  
Jacob R. Kennedy ◽  
Filomeno Martina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document