corrosion pits
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 87)

H-INDEX

34
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7911
Author(s):  
Xudong Yan ◽  
Jianlin Sun

Copper strips experience severe corrosion when rolled with an oil-in-water (O/W) emulsions lubricant. The effects of rolling reduction on the pitting corrosion behavior and surface microstructure of Cu strips were studied in detail using electrochemical measurements and electron back scattered diffraction (EBSD) analysis. It was found that the corrosion current densities of the rolled Cu strips increased with accumulated reduction, which also lowered the pitting potentials and weakened their corrosion resistances. Therefore, the corrosive tendency of Cu strips under different rolling reductions (ε) followed the order of ε0% < ε20.7% < ε50.6% < ε77.3%. The Cu surface easily reacted with chlorine, sulfur, and carbon components from O/W emulsions to generate pitting corrosion. Under the interactive effect of pitting corrosion and stress corrosion, pits expanded along the rolling direction. The aggregation of anions in surface defects, such as dislocations, metastable pits, and microcracks, further accelerated the pitting corrosion of the surface.


Author(s):  
Chao Liu ◽  
Qinglin Li ◽  
Tianyi Zhang ◽  
Xiaoming Ding ◽  
Xiaorong Li ◽  
...  

Abstract The pitting corrosion behavior of ZL101A aluminum alloy in simulated marine environment was investigated for guiding the composition design. The Volta potential of the precipitated phases was mainly characterized via the in-situ SKPFM technique. The obtained results indicated that the precipitated phases of ZL101A were composed of Al-Si phase, Si-Mg-Fe phase and Si-rich/Al-poor phase, accelerating the formation of corrosion pits during immersion test. Both Al-Si phase and Si-Mg-Fe phase accelerated the corrosion process through the self-dissolution and the galvanic effect, respectively, which can be contributed to the high corrosion sensitivity of the two phases. Si-rich/Al-poor phase presented high corrosion resistance, which should be related to the deficiency of impure elements such as Mg and Fe.


2021 ◽  
Vol 154 (A3) ◽  
Author(s):  
J R MacKay ◽  
M J Smith ◽  
F Van Keulen ◽  
T N Bosman

The effect of corrosion damage on overall collapse strength of submarine pressure hulls was studied experimentally. Ring-stiffened cylinders were machined from aluminium tubing and loaded to collapse under external pressure. In selected specimens, some of the outer shell material was machined away in large single patches, representing general corrosion. Other specimens had many smaller patches, representing corrosion pitting from the outside of the hull, followed by grinding. Large-amplitude out-of-circularity (OOC) was introduced by mechanically deforming selected cylinders. Clusters of artificial corrosion pits were found to have approximately the same effect on collapse pressure as equal-depth general corrosion covering the same region of plating. General corrosion was found to be most severe when it was “in-phase” with OOC, since, during pressure loading, high compressive stresses resulting from corrosion were compounded by compressive bending stresses associated with OOC, and furthermore, the corrosion tended to increase the geometric imperfection itself. On the other hand, out-of-phase corrosion reduced the effect of OOC, while at the same time the thinning-associated compressive stresses were counteracted by local tensile bending stresses associated with OOC, so that strength reductions were correspondingly smaller. Overall collapse pressures for corroded specimens were reduced by, on average, 0.85% for each 1% of shell thinning. That result is based on a linear approximation of the nonlinear relationship between thinning and collapse pressure. The linear trend-line, which was used to account for the experimental scatter, is based on specimens with 13 to 27% shell thinning, and with a variety of corrosion areas and OOC amplitudes.


2021 ◽  
Author(s):  
Hui Xu ◽  
Lulu Fang ◽  
Qiaofeng Ding ◽  
Yanjun Guo ◽  
Xiaohui Li ◽  
...  

The cracking mechanisms of 316L heat exchanger tubes employed in power station were studied using optical microscope (OM) and scanning electron microscope (SEM). It is demonstrated that the hardness value, microstructure and tensile properties of selected #1 and #2 tube samples all meet the requirements of relevant standards, but the contents of Ni and Mo element of #1 tube are slightly lower than the standard requirements. The circumferential cracks on the two samples nucleate at the corrosion pits on the inner wall of the tubes, while Cl element was detected in the corrosion products of these pits. The cracks propagate from the inner wall to the outer wall along the circumferential direction of the tube, forming a dendritic crack morphology with both transgranular and intergranular propagation characteristics. Combined with the investigation of the service condition of the heat exchanger tubes and the analysis of the experimental results, it can be concluded that the main reason for cracking is the initiation of pin-corrosion when the content of chloride ion exceeds the standard during the service of the tubes, which will induce stress corrosion cracking, causing crack expansion through the wall thickness, and finally lead to leakage of the tube. In addition, from the point of view of materials, Mo is an important element to improve the pitting resistance of materials. The content of Mo element detected in the samples is lower than the standard requirement, which is also one of the reasons for the easy pitting corrosion of the inner wall of the pipe.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7437
Author(s):  
Gaoqiang Jiang ◽  
Chengyun Cui ◽  
Lu Chen ◽  
Yucheng Wu ◽  
Xigui Cui

To improve the wear and corrosion resistance of the pump barrel material (40Cr steel), a (M:Nb,Ta)C/Ni35 composite cladding coating by in situ synthesis of composite carbides was conducted. The effects of ceramic micro-particles content on the phase composition, microstructure of the coating, structural characteristics of (M:Nb,Ta)C and the tribology and electrochemical corrosion behavior were systematically studied. The increase of ceramic micro-particles changed the morphology of (M:Nb,Ta)C with the size from sub-micron to micron. The (M:Nb,Ta)C dispersed along the grain boundary inhibits the growth of the grains. During friction, the spherical structure exhibited a rolling lubrication effect and the petal structure provided a stronger attachment ability to resist the shear. The corrosion occurred at the grains, exhibiting corrosion pits, in which the high content ceramic micro-particles were relatively shallow. Moreover, a few dot corrosion pits were distributed along the grain boundaries without (M:Nb,Ta)C. Therefore, to improve the corrosion resistance, a thin composite carbide coating with good wear and corrosion resistance was prepared.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xin Lin ◽  
Guojian Shao

In this paper, the reliability analysis and residual life assessment model of gas pipelines with multiple corrosion pits are established. Aiming at the simulation evaluation of small failure probability of gas pipelines, a new method for reliability analysis and residual life assessment of gas pipelines with multiple internal corrosion pits is proposed, which is called the Hamiltonian Monte Carlo subset simulation (HMC-SS) method. Compared with the traditional MCS (Monte Carlo simulation) algorithm, the HMC-SS method has the advantages of less sampling, low cost, and high accuracy. And compared with the random walk SS method, the HMC-SS method can analyze the state space more efficiently and achieve faster convergence. In this paper, the HMC-SS method is applied to the reliability analysis and residual life assessment of gas pipeline engineering, and the sensitivity analysis of the random parameters affecting the failure probability of the pipeline is carried out. The results show that the corrosion rate, the depth of corrosion defects, and the wall thickness of the pipeline have great influence on the residual life of the pipeline, while the yield strength, working pressure, and the length of corrosion pits have no obvious influence on the failure probability and residual life of the pipeline. The analysis shows that the proposed HMC-SS method can be used as a reasonable tool for failure assessment of natural gas pipelines affected by corrosion to determine the remaining life of the pipeline system. This method provides a reliable theoretical basis for the integrity management of the gas pipeline.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022103
Author(s):  
Dungui Zuo ◽  
Zhongwei Zhang ◽  
Yunting Lai ◽  
Guodong Zhang

Abstract The reasons leading to the fracture of 17-4PH stainless steel bolts in the isolation valve of a power plant was analysed by means of morphology analysis, chemical analysis, hardness test, metallographic test, pitting corrosion test and intergranular corrosion test, SEM and other detection means. The results show that there are many corrosion pits on the surface of the valve stem in the seawater system, the corrosion pits is extend and propagation in intergranular cracking. The main reasons to valve stem fracture are the low corrosion resistance of the material and the improper aging process of heat treatment.


2021 ◽  
Vol 93 ◽  
pp. 102115
Author(s):  
Supasit Srivaranun ◽  
Mitsuyoshi Akiyama ◽  
Paolo Bocchini ◽  
Vasileios Christou ◽  
Dan M. Frangopol ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1754
Author(s):  
Chi Liu ◽  
Liyong Ma ◽  
Ziyong Zhang ◽  
Zhuo Fu ◽  
Lijuan Liu

The 2524-T3 aluminum alloy was subjected to fatigue tests under the conditions of R = 0, 3.5% NaCl corrosion solution, and the loading cycles of 106, and the S-N curve was obtained. The horizontal fatigue limit was 169 MPa, which is slightly higher than the longitudinal fatigue limit of 163 MPa. In addition, detailed microstructural analysis of the micro-morphological fatigue failure features was carried out. The influence mechanism of corrosion on the fatigue crack propagation of 2524-T3 aluminum alloy was discussed. The fatigue source characterized by cleavage and fracture mainly comes from corrosion pits, whose expansion direction is perpendicular to the principal stress direction. The stable propagation zone is characterized by strip fractures. The main feature of the fracture in the fracture zone is equiaxed dimples. The larger dimples are mixed with second-phase particles ranging in size from 1 to 5 μm. There is almost a one-to-one correspondence between the dimples and the second-phase particles. The fracture mechanism of 2524 alloy at this stage is transformed into a micro-holes connection mechanism, and the nucleation of micropores is mainly derived from the second-phase particles.


Sign in / Sign up

Export Citation Format

Share Document