scholarly journals Projective varieties with non-residually finite fundamental group

1993 ◽  
Vol 77 (1) ◽  
pp. 103-119 ◽  
Author(s):  
Domingo Toledo
2020 ◽  
pp. 1-10
Author(s):  
Michelle Daher ◽  
Alexander Dranishnikov

We prove that for 4-manifolds [Formula: see text] with residually finite fundamental group and non-spin universal covering [Formula: see text], the inequality [Formula: see text] implies the inequality [Formula: see text]. This allows us to complete the proof of Gromov’s Conjecture for 4-manifolds with abelian fundamental group.


2007 ◽  
Vol 14 (6) ◽  
pp. 1081-1098 ◽  
Author(s):  
Ciro Ciliberto ◽  
Margarida Mendes Lopes ◽  
Rita Pardini

Author(s):  
Francesco Bei ◽  
Paolo Piazza

Abstract Let $(X,h)$ be a compact and irreducible Hermitian complex space. This paper is devoted to various questions concerning the analytic K-homology of $(X,h)$. In the 1st part, assuming either $\dim (\operatorname{sing}(X))=0$ or $\dim (X)=2$, we show that the rolled-up operator of the minimal $L^2$-$\overline{\partial }$ complex, denoted here $\overline{\eth }_{\textrm{rel}}$, induces a class in $K_0 (X)\equiv KK_0(C(X),\mathbb{C})$. A similar result, assuming $\dim (\operatorname{sing}(X))=0$, is proved also for $\overline{\eth }_{\textrm{abs}}$, the rolled-up operator of the maximal $L^2$-$\overline{\partial }$ complex. We then show that when $\dim (\operatorname{sing}(X))=0$ we have $[\overline{\eth }_{\textrm{rel}}]=\pi _*[\overline{\eth }_M]$ with $\pi :M\rightarrow X$ an arbitrary resolution and with $[\overline{\eth }_M]\in K_0 (M)$ the analytic K-homology class induced by $\overline{\partial }+\overline{\partial }^t$ on $M$. In the 2nd part of the paper we focus on complex projective varieties $(V,h)$ endowed with the Fubini–Study metric. First, assuming $\dim (V)\leq 2$, we compare the Baum–Fulton–MacPherson K-homology class of $V$ with the class defined analytically through the rolled-up operator of any $L^2$-$\overline{\partial }$ complex. We show that there is no $L^2$-$\overline{\partial }$ complex on $(\operatorname{reg}(V),h)$ whose rolled-up operator induces a K-homology class that equals the Baum–Fulton–MacPherson class. Finally in the last part of the paper we prove that under suitable assumptions on $V$ the push-forward of $[\overline{\eth }_{\textrm{rel}}]$ in the K-homology of the classifying space of the fundamental group of $V$ is a birational invariant.


2000 ◽  
Vol 02 (01) ◽  
pp. 75-86 ◽  
Author(s):  
FUQUAN FANG ◽  
XIAOCHUN RONG

We prove a vanishing theorem of certain cohomology classes for an 2n-manifold of finite fundamental group which admits a fixed point free circle action. In particular, it implies that any Tk-action on a compact symplectic manifold of finite fundamental group has a non-empty fixed point set. The vanishing theorem is used to prove two finiteness results in which no lower bound on volume is assumed. (i) The set of symplectic n-manifolds of finite fundamental groups with curvature, λ ≤ sec ≤ Λ, and diameter, diam ; ≤ d, contains only finitely many diffeomorphism types depending only on n, λ, Λ and d. (ii) The set of simply connected n-manifolds (n ≤ 6) with λ ≤ sec ≤ Λ and diam ≤ d contains only finitely many diffeomorphism types depending only on n, λ, Λ and d.


2019 ◽  
pp. 1-16
Author(s):  
Khalid Bou-Rabee ◽  
Daniel Studenmund

Let [Formula: see text] be the fundamental group of a surface of finite type and [Formula: see text] be its abstract commensurator. Then [Formula: see text] contains the solvable Baumslag–Solitar groups [Formula: see text] for any [Formula: see text]. Moreover, the Baumslag–Solitar group [Formula: see text] has an image in [Formula: see text] that is not residually finite. Our proofs are computer-assisted. Our results also illustrate that finitely-generated subgroups of [Formula: see text] are concrete objects amenable to computational methods. For example, we give a proof that [Formula: see text] is not residually finite without the use of normal forms of HNN extensions.


Sign in / Sign up

Export Citation Format

Share Document