FIXED POINT FREE CIRCLE ACTIONS AND FINITENESS THEOREMS

2000 ◽  
Vol 02 (01) ◽  
pp. 75-86 ◽  
Author(s):  
FUQUAN FANG ◽  
XIAOCHUN RONG

We prove a vanishing theorem of certain cohomology classes for an 2n-manifold of finite fundamental group which admits a fixed point free circle action. In particular, it implies that any Tk-action on a compact symplectic manifold of finite fundamental group has a non-empty fixed point set. The vanishing theorem is used to prove two finiteness results in which no lower bound on volume is assumed. (i) The set of symplectic n-manifolds of finite fundamental groups with curvature, λ ≤ sec ≤ Λ, and diameter, diam ; ≤ d, contains only finitely many diffeomorphism types depending only on n, λ, Λ and d. (ii) The set of simply connected n-manifolds (n ≤ 6) with λ ≤ sec ≤ Λ and diam ≤ d contains only finitely many diffeomorphism types depending only on n, λ, Λ and d.

Author(s):  
M. A. Armstrong

Introduction. Let K be a connected simplicial complex, finite or infinite, its polyhedron ((2), page 45) being the space X. Then X is connected. Suppose further that X is simply connected. For any group G of simplicial transformations of X, H will denote the normal subgroup generated by elements which have a non-empty fixed-point set.


Author(s):  
Loring W. Tu

This chapter offers a rationale for a localization formula. It looks at the equivariant localization formula of Atiyah–Bott and Berline–Vergne. The equivariant localization formula of Atiyah–Bott and Berline–Vergne expresses, for a torus action, the integral of an equivariantly closed form over a compact oriented manifold as a finite sum over the fixed point set. The central idea is to express a closed form as an exact form away from finitely many points. Throughout his career, Raoul Bott exploited this idea to prove many different localization formulas. The chapter then considers circle actions with finitely many fixed points. It also studies the spherical blow-up.


2011 ◽  
Vol 22 (11) ◽  
pp. 1603-1610 ◽  
Author(s):  
PING LI ◽  
KEFENG LIU

Kawakubo and Uchida showed that, if a closed oriented 4k-dimensional manifold M admits a semi-free circle action such that the dimension of the fixed point set is less than 2k, then the signature of M vanishes. In this note, by using G-signature theorem and the rigidity of the signature operator, we generalize this result to more general circle actions. Combining the same idea with the remarkable Witten–Taubes–Bott rigidity theorem, we explore more vanishing results on spin manifolds admitting such circle actions. Our results are closely related to some earlier results of Conner–Floyd, Landweber–Stong and Hirzebruch–Slodowy.


2004 ◽  
Vol 56 (3) ◽  
pp. 553-565 ◽  
Author(s):  
Ramin Mohammadalikhani

AbstractIn this article we are concerned with how to compute the cohomology ring of a symplectic quotient by a circle action using the information we have about the cohomology of the original manifold and some data at the fixed point set of the action. Our method is based on the Tolman-Weitsman theorem which gives a characterization of the kernel of the Kirwan map. First we compute a generating set for the kernel of the Kirwan map for the case of product of compact connected manifolds such that the cohomology ring of each of them is generated by a degree two class. We assume the fixed point set is isolated; however the circle action only needs to be “formally Hamiltonian”. By identifying the kernel, we obtain the cohomology ring of the symplectic quotient. Next we apply this result to some special cases and in particular to the case of products of two dimensional spheres. We show that the results of Kalkman and Hausmann-Knutson are special cases of our result.


1983 ◽  
Vol 109 (2) ◽  
pp. 349-362 ◽  
Author(s):  
Ronald Fintushel ◽  
Peter Pao

1982 ◽  
Vol 38 (1) ◽  
pp. 549-555
Author(s):  
Christian C. Fenske

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Zhao-Rong Kong ◽  
Lu-Chuan Ceng ◽  
Qamrul Hasan Ansari ◽  
Chin-Tzong Pang

We consider a triple hierarchical variational inequality problem (THVIP), that is, a variational inequality problem defined over the set of solutions of another variational inequality problem which is defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Moreover, we propose a multistep hybrid extragradient method to compute the approximate solutions of the THVIP and present the convergence analysis of the sequence generated by the proposed method. We also derive a solution method for solving a system of hierarchical variational inequalities (SHVI), that is, a system of variational inequalities defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Under very mild conditions, it is proven that the sequence generated by the proposed method converges strongly to a unique solution of the SHVI.


2018 ◽  
Vol 18 (3) ◽  
pp. 285-287
Author(s):  
Xiaoyang Chen

AbstractLet X bea Stein manifold with an anti-holomorphic involution τ and nonempty compact fixed point set Xτ. We show that X is diffeomorphic to the normal bundle of Xτ provided that X admits a complete Riemannian metric g of nonnegative sectional curvature such that τ*g = g.


Sign in / Sign up

Export Citation Format

Share Document