A possible incompatibility between the $$\mathcal{N}\mathcal{N}$$ and $$\bar {\mathcal{N}}\mathcal{N}$$ total cross-sections and the Regge-pole modeltotal cross-sections and the Regge-pole model

1975 ◽  
Vol 29 (1) ◽  
pp. 30-40 ◽  
Author(s):  
A. Bouquet ◽  
B. Diu ◽  
E. Leader ◽  
B. Nicolescu
1973 ◽  
Vol 17 (1) ◽  
pp. 232-244
Author(s):  
S. N. Ganguli ◽  
K. V. L. Sarma

2015 ◽  
Vol 24 (11) ◽  
pp. 1550082 ◽  
Author(s):  
R. I. Badran ◽  
A. I. Istaiti ◽  
W. N. Mashaqbeh ◽  
I. H. Al-Lehyani

Regge pole model is adopted to account for the angular distribution at backward angles for a set of elastic scattering processes of incident [Formula: see text]-particles by different isotopes of nickel ions, [Formula: see text]Ni, at different laboratory energies above Coulomb barrier. The reproduction of cross-sections at backward angles is preceded by an attempt to fit the experimental data at forward angles of the scattering. Three-parameter McIntyre model which is based on concept of strong absorption parametrization of the scattering matrix elements, has been employed to analyze and reproduce the experimental data of angular distribution of different elastic scattering reactions at forward angles. The three parameters extracted from McIntyre model analysis are employed as fixed entries in the fitting process of the full angle-range of angular distribution where another four free parameters are employed using the Regge pole model. Diffractive features observed in the angular distributions are studied. The Fresnel-type diffraction pattern is found dominant for all investigated elastic scatterings where Coulomb interaction is strong. The interaction radius of elastic scattering is found decreasing and the total cross-section increasing when the incident projectile energy increases. Moreover, the interaction radius and total reaction cross-section are found increasing with the increase in the size of target ion. Such diffractive behavior is consistent with the prescriptions of strong absorption model (SAM). Furthermore, the explanation of the diffractive features of studied elastic scattering reactions is model-independent. The Regge pole analysis reveals the existence of a pole which has its location, width, amplitude and phase angle exhibiting a common peak at energy of 24.1[Formula: see text]MeV with oscillatory behaviour at energies around this peak energy, for all elastic scattering of alpha particle on isotopes of Ni targets except that of [Formula: see text]Ni target which exhibits extra peaks for energy larger than 24.1[Formula: see text]MeV. We believe that the presence of poles is responsible for the oscillatory structure of the backward cross-sections. The variation of Regge pole parameters with both incident energy and size of target nucleus is illustrated.


1968 ◽  
Vol 175 (5) ◽  
pp. 1991-1997 ◽  
Author(s):  
Farzam Arbab ◽  
Richard C. Brower

Author(s):  
Zineb Felfli ◽  
Kelvin Suggs ◽  
Nantambu Nicholas ◽  
Alfred Z. Msezane

We first explore negative-ion formation in fullerenes C44, C60, C70, C98, C112, C120, C132 and C136 through low-energy electron elastic scattering total cross sections calculations using our Regge-pole methodology. Water oxidation to peroxide and water synthesis from H2 and O2 are then investigated using the anionic catalysts C44ˉ to C136ˉ. The fundamental mechanism underlying negative-ion catalysis involves hydrogen bond strength-weakening in the transition state. DFT transition state calculations found C60ˉ numerically stable for both water and peroxide synthesis, C100ˉ increases the energy barrier the most and C136ˉ the most effective catalyst in both water synthesis and oxidation to H2O2.


1969 ◽  
Vol 183 (5) ◽  
pp. 1452-1455 ◽  
Author(s):  
Maurice L. Blackmon ◽  
G. Kramer ◽  
K. Schilling

Sign in / Sign up

Export Citation Format

Share Document