A superreflexive Banach space with a finite dimensional decomposition so that no large subspace has a basis

1990 ◽  
Vol 70 (2) ◽  
pp. 188-204 ◽  
Author(s):  
P. Mankiewicz ◽  
N. J. Nielsen
2019 ◽  
Vol 71 (1) ◽  
pp. 139-174
Author(s):  
Jesús M F Castillo ◽  
Yolanda Moreno

Abstract We introduce and study the notion of space of almost universal complemented disposition (a.u.c.d.) as a generalization of Kadec space. We show that every Banach space with separable dual is isometrically contained as a $1$-complemented subspace of a separable a.u.c.d. space and that all a.u.c.d. spaces with $1$-finite dimensional decomposition (FDD) are isometric and contain isometric $1$-complemented copies of every separable Banach space with $1$-FDD. We then study spaces of universal complemented disposition (u.c.d.) and provide different constructions for such spaces. We also consider spaces of u.c.d. with respect to separable spaces.


1995 ◽  
Vol 38 (2) ◽  
pp. 207-214
Author(s):  
Maria Girardi ◽  
William B. Johnson

AbstractA Banach space has the complete continuity property (CCP) if each bounded linear operator from L1 into is completely continuous (i.e., maps weakly convergent sequences to norm convergent sequences). The main theorem shows that a Banach space failing the CCP has a subspace with a finite dimensional decomposition which fails the CCP. If furthermore the space has some nice local structure (such as fails cotype or is a lattice), then the decomposition may be strengthened to a basis.


Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.


2010 ◽  
Vol 148 (3) ◽  
pp. 519-529 ◽  
Author(s):  
S. J. DILWORTH ◽  
E. ODELL ◽  
TH. SCHLUMPRECHT ◽  
ANDRÁS ZSÁK

AbstractWe consider the X-Greedy Algorithm and the Dual Greedy Algorithm in a finite-dimensional Banach space with a strictly monotone basis as the dictionary. We show that when the dictionary is an initial segment of the Haar basis in Lp[0, 1] (1 < p < ∞) then the algorithms terminate after finitely many iterations and that the number of iterations is bounded by a function of the length of the initial segment. We also prove a more general result for a class of strictly monotone bases.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2346
Author(s):  
Almudena Campos-Jiménez ◽  
Francisco Javier García-Pacheco

In this paper we provide new geometric invariants of surjective isometries between unit spheres of Banach spaces. Let X,Y be Banach spaces and let T:SX→SY be a surjective isometry. The most relevant geometric invariants under surjective isometries such as T are known to be the starlike sets, the maximal faces of the unit ball, and the antipodal points (in the finite-dimensional case). Here, new geometric invariants are found, such as almost flat sets, flat sets, starlike compatible sets, and starlike generated sets. Also, in this work, it is proved that if F is a maximal face of the unit ball containing inner points, then T(−F)=−T(F). We also show that if [x,y] is a non-trivial segment contained in the unit sphere such that T([x,y]) is convex, then T is affine on [x,y]. As a consequence, T is affine on every segment that is a maximal face. On the other hand, we introduce a new geometric property called property P, which states that every face of the unit ball is the intersection of all maximal faces containing it. This property has turned out to be, in a implicit way, a very useful tool to show that many Banach spaces enjoy the Mazur-Ulam property. Following this line, in this manuscript it is proved that every reflexive or separable Banach space with dimension greater than or equal to 2 can be equivalently renormed to fail property P.


Sign in / Sign up

Export Citation Format

Share Document