scholarly journals Geometric Invariants of Surjective Isometries between Unit Spheres

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2346
Author(s):  
Almudena Campos-Jiménez ◽  
Francisco Javier García-Pacheco

In this paper we provide new geometric invariants of surjective isometries between unit spheres of Banach spaces. Let X,Y be Banach spaces and let T:SX→SY be a surjective isometry. The most relevant geometric invariants under surjective isometries such as T are known to be the starlike sets, the maximal faces of the unit ball, and the antipodal points (in the finite-dimensional case). Here, new geometric invariants are found, such as almost flat sets, flat sets, starlike compatible sets, and starlike generated sets. Also, in this work, it is proved that if F is a maximal face of the unit ball containing inner points, then T(−F)=−T(F). We also show that if [x,y] is a non-trivial segment contained in the unit sphere such that T([x,y]) is convex, then T is affine on [x,y]. As a consequence, T is affine on every segment that is a maximal face. On the other hand, we introduce a new geometric property called property P, which states that every face of the unit ball is the intersection of all maximal faces containing it. This property has turned out to be, in a implicit way, a very useful tool to show that many Banach spaces enjoy the Mazur-Ulam property. Following this line, in this manuscript it is proved that every reflexive or separable Banach space with dimension greater than or equal to 2 can be equivalently renormed to fail property P.

2020 ◽  
Vol 63 (2) ◽  
pp. 475-496
Author(s):  
T. A. Abrahamsen ◽  
R. Haller ◽  
V. Lima ◽  
K. Pirk

AbstractA Δ-point x of a Banach space is a norm-one element that is arbitrarily close to convex combinations of elements in the unit ball that are almost at distance 2 from x. If, in addition, every point in the unit ball is arbitrarily close to such convex combinations, x is a Daugavet point. A Banach space X has the Daugavet property if and only if every norm-one element is a Daugavet point. We show that Δ- and Daugavet points are the same in L1-spaces, in L1-preduals, as well as in a big class of Müntz spaces. We also provide an example of a Banach space where all points on the unit sphere are Δ-points, but none of them are Daugavet points. We also study the property that the unit ball is the closed convex hull of its Δ-points. This gives rise to a new diameter-two property that we call the convex diametral diameter-two property. We show that all C(K) spaces, K infinite compact Hausdorff, as well as all Müntz spaces have this property. Moreover, we show that this property is stable under absolute sums.


Author(s):  
Michael Cambern ◽  
Krzysztof Jarosz ◽  
Georg Wodinski

SynopsisLp -summands and Lp -projections in Banach spaces have been studied by E. Behrends, who showed that for a fixed value of p, l ≦ p ≦ ∞, p ≠ 2, any two Lp -projections on a given Banach space E commute. Here we introduce the notion of almost-Lp -projections, and we establish a result which generalises Behrends' theorem, while also simplifying its proof. Almost-Lp-projections are then applied to the study of small-bound isomorphisms of Bochner LP -spaces. It is shown that if the Banach space E satisfies a geometric condition which, in the finite-dimensional case, reduces to the absence of non-trivial Lp-summands, then for separable measure spaces, the existence of a small-bound isomorphism between Lp (λ1, E) and LP(λ2, E) implies that these Bochner spaces are, in fact, isometric.


1986 ◽  
Vol 104 (1-2) ◽  
pp. 169-175 ◽  
Author(s):  
P. G. Dixon

SynopsisWe study the existence of left approximate units, left approximate identities and bounded left approximate identities in the algebras (X)of all compact operators on a Banach space X and ℱ(X)− of all operators uniformly approximable by finite rank operators. In the case of bounded left approximate identities, necessary and sufficient conditions on X are obtained. In the other cases, sufficient conditions are obtained, together with an example of non-existence using a space constructed by Szankowski. The possibility of the sufficient conditions being also necessary depends on the question of whether every compact set is contained in the closure of the image of the unit ball under an operator in (X)(or ℱ(X)−). Sufficient conditions on X are obtained for this to be true, but it is conjectured that the answer for general X is negative.


Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.


1977 ◽  
Vol 29 (5) ◽  
pp. 963-970 ◽  
Author(s):  
Mark A. Smith

In a Banach space, the directional modulus of rotundity, δ (ϵ, z), measures the minimum depth at which the midpoints of all chords of the unit ball which are parallel to z and of length at least ϵ are buried beneath the surface. A Banach space is uniformly rotund in every direction (URED) if δ (ϵ, z) is positive for every positive ϵ and every nonzero element z. This concept of directionalized uniform rotundity was introduced by Garkavi [6] to characterize those Banach spaces in which every bounded subset has at most one Čebyšev center.


1983 ◽  
Vol 26 (2) ◽  
pp. 163-167 ◽  
Author(s):  
L. Drewnowski

Following Lotz, Peck and Porta [9], a continuous linear operator from one Banach space into another is called a semi-embedding if it is one-to-one and maps the closed unit ball of the domain onto a closed (hence complete) set. (Below we shall allow the codomain to be an F-space, i.e., a complete metrisable topological vector space.) One of the main results established in [9] is that if X is a compact scattered space, then every semi-embedding of C(X) into another Banach space is an isomorphism ([9], Main Theorem, (a)⇒(b)).


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2066
Author(s):  
Messaoud Bounkhel ◽  
Mostafa Bachar

In the present work, we extend, to the setting of reflexive smooth Banach spaces, the class of primal lower nice functions, which was proposed, for the first time, in finite dimensional spaces in [Nonlinear Anal. 1991, 17, 385–398] and enlarged to Hilbert spaces in [Trans. Am. Math. Soc. 1995, 347, 1269–1294]. Our principal target is to extend some existing characterisations of this class to our Banach space setting and to study the relationship between this concept and the generalised V-prox-regularity of the epigraphs in the sense proposed recently by the authors in [J. Math. Anal. Appl. 2019, 475, 699–29].


1999 ◽  
Vol 59 (3) ◽  
pp. 361-367 ◽  
Author(s):  
A. Jiménez-Melado

Roughly speaking, we show that a Banach space X has the fixed point property for nonexpansive mappings whenever X has the WORTH property and the unit sphere of X does not contain a triangle with sides of length larger than 2.


2013 ◽  
Vol 56 (2) ◽  
pp. 427-437 ◽  
Author(s):  
ANIL KUMAR KARN ◽  
DEBA PRASAD SINHA

AbstractLet 1 ≤ p < ∞. A sequence 〈 xn 〉 in a Banach space X is defined to be p-operator summable if for each 〈 fn 〉 ∈ lw*p(X*) we have 〈〈 fn(xk)〉k〉n ∈ lsp(lp). Every norm p-summable sequence in a Banach space is operator p-summable whereas in its turn every operator p-summable sequence is weakly p-summable. An operator T ∈ B(X, Y) is said to be p-limited if for every 〈 xn 〉 ∈ lpw(X), 〈 Txn 〉 is operator p-summable. The set of all p-limited operators forms a normed operator ideal. It is shown that every weakly p-summable sequence in X is operator p-summable if and only if every operator T ∈ B(X, lp) is p-absolutely summing. On the other hand, every operator p-summable sequence in X is norm p-summable if and only if every p-limited operator in B(lp', X) is absolutely p-summing. Moreover, this is the case if and only if X is a subspace of Lp(μ) for some Borel measure μ.


2011 ◽  
Vol 53 (3) ◽  
pp. 443-449 ◽  
Author(s):  
ANTONÍN SLAVÍK

AbstractThis paper is inspired by a counter example of J. Kurzweil published in [5], whose intention was to demonstrate that a certain property of linear operators on finite-dimensional spaces need not be preserved in infinite dimension. We obtain a stronger result, which says that no infinite-dimensional Banach space can have the given property. Along the way, we will also derive an interesting proposition related to Dvoretzky's theorem.


Sign in / Sign up

Export Citation Format

Share Document