The wigner property for CL-spaces and finite-dimensional polyhedral banach spaces

Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.

Author(s):  
Dongni Tan ◽  
Xujian Huang

Abstract We say that a map $f$ from a Banach space $X$ to another Banach space $Y$ is a phase-isometry if the equality \[ \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \] holds for all $x,\,y\in X$ . A Banach space $X$ is said to have the Wigner property if for any Banach space $Y$ and every surjective phase-isometry $f : X\rightarrow Y$ , there exists a phase function $\varepsilon : X \rightarrow \{-1,\,1\}$ such that $\varepsilon \cdot f$ is a linear isometry. We present some basic properties of phase-isometries between two real Banach spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces possess the Wigner property.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2346
Author(s):  
Almudena Campos-Jiménez ◽  
Francisco Javier García-Pacheco

In this paper we provide new geometric invariants of surjective isometries between unit spheres of Banach spaces. Let X,Y be Banach spaces and let T:SX→SY be a surjective isometry. The most relevant geometric invariants under surjective isometries such as T are known to be the starlike sets, the maximal faces of the unit ball, and the antipodal points (in the finite-dimensional case). Here, new geometric invariants are found, such as almost flat sets, flat sets, starlike compatible sets, and starlike generated sets. Also, in this work, it is proved that if F is a maximal face of the unit ball containing inner points, then T(−F)=−T(F). We also show that if [x,y] is a non-trivial segment contained in the unit sphere such that T([x,y]) is convex, then T is affine on [x,y]. As a consequence, T is affine on every segment that is a maximal face. On the other hand, we introduce a new geometric property called property P, which states that every face of the unit ball is the intersection of all maximal faces containing it. This property has turned out to be, in a implicit way, a very useful tool to show that many Banach spaces enjoy the Mazur-Ulam property. Following this line, in this manuscript it is proved that every reflexive or separable Banach space with dimension greater than or equal to 2 can be equivalently renormed to fail property P.


Author(s):  
Joram Lindenstrauss ◽  
David Preiss ◽  
Tiˇser Jaroslav

This chapter introduces the notions of Γ‎-null and Γ‎ₙ-null sets, which are σ‎-ideals of subsets of a Banach space X. Γ‎-null set is key for the strongest known general Fréchet differentiability results in Banach spaces, whereas Γ‎ₙ-null set presents a new, more refined concept. The reason for these notions comes from an (imprecise) observation that differentiability problems are governed by measure in finite dimension, but by Baire category when it comes to behavior at infinity. The chapter first relates Γ‎-null and Γ‎ₙ-null sets to Gâteaux differentiability before discussing their basic properties. It then describes Γ‎-null and Γ‎ₙ-null sets of low Borel classes and presents equivalent definitions of Γ‎ₙ-null sets. Finally, it considers the separable determination of Γ‎-nullness for Borel sets.


1974 ◽  
Vol 76 (1) ◽  
pp. 157-159 ◽  
Author(s):  
Richard Evans

In the structure theory of Banach spaces as developed in (1), an important role is played by subspaces which are the ranges of projections having norm properties akin to those of the classical Banach spaces. A linear projection e on a Banach space V is called an M-projection ifand an L-projection if, insteadA closed subspace J of V is called an M-Summand if it is the range of an M-projection and an M-Ideal if J0 is the range of an L-projection in V′. Every M-Summand is an M-Ideal but the reverse is false.


1974 ◽  
Vol 53 ◽  
pp. 141-155 ◽  
Author(s):  
Mitsuru Nakai

Consider a nonnegative Hölder continuous 2-form P(z)dxdy on a hyperbolic Riemann surface R (z = x + iy). We denote by PB(R) the Banach space of solutions of the equation Δu = Pu on R with finite supremum norms. We are interested in the question how the Banach space structure of PB(R) depends on P. Precisely we consider two such 2-forms P and Q on R and compare PB(R) and QB(R). If there exists a bijective linear isometry T of PB(R) to QB(R), then we say that PB(R) and QB(R) are isomorphic.


1989 ◽  
Vol 32 (2) ◽  
pp. 317-327 ◽  
Author(s):  
Erik Christensen ◽  
Allan M. Sinclair

Milutin's Theorem states that if X and Y are uncountable metrizable compact Hausdorff spaces, then C(X) and C(Y) are isomorphic as Banach spaces [15, p. 379]. Thus there is only one isomorphism class of such Banach spaces. There is also an extensive theory of the Banach–Mazur distance between various classes of classical Banach spaces with the deepest results depending on probabilistic and asymptotic estimates [18]. Lindenstrauss, Haagerup and possibly others know that as Banach spaceswhere H is the infinite dimensional separable Hilbert space, R is the injective II 1-factor on H, and ≈ denotes Banach space isomorphism. Haagerup informed us of this result, and suggested considering completely bounded isomorphisms; it is a pleasure to acknowledge his suggestion. We replace Banach space isomorphisms by completely bounded isomorphisms that preserve the linear structure and involution, but not the product. One of the two theorems of this paper is a strengthened version of the above result: if N is an injective von Neumann algebra with separable predual and not finite type I of bounded degree, then N is completely boundedly isomorphic to B(H). The methods used are similar to those in Banach space theory with complete boundedness needing a little care at various points in the argument. Extensive use is made of the conditional expectation available for injective algebras, and the methods do not apply to the interesting problems of completely bounded isomorphisms of non-injective von Neumann algebras (see [4] for a study of the completely bounded approximation property).


1969 ◽  
Vol 21 ◽  
pp. 1206-1217 ◽  
Author(s):  
C. W. Mcarthur ◽  
Ivan Singer ◽  
Mark Levin

1. Let E be a Banach space (by this we shall mean, for simplicity, a real Banach space) and (xn,fn) ({xn} ⊂ E, {fn} ⊂ E*) a biorthogonal system, such that {fn} is total on E (i.e. the relations x ∈ E,fn(x) = 0, n = 1, 2, …, imply x = 0). Then it is natural to consider the cone1which we shall call “the cone associated with the biorthogonal system (xn,fn)”. In particular, if {xn} is a basis of E and {fn} the sequence of coefficient functional associated with the basis {xn}, this cone is nothing else but2and we shall call it “the cone associated with the basis {xn}”.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2066
Author(s):  
Messaoud Bounkhel ◽  
Mostafa Bachar

In the present work, we extend, to the setting of reflexive smooth Banach spaces, the class of primal lower nice functions, which was proposed, for the first time, in finite dimensional spaces in [Nonlinear Anal. 1991, 17, 385–398] and enlarged to Hilbert spaces in [Trans. Am. Math. Soc. 1995, 347, 1269–1294]. Our principal target is to extend some existing characterisations of this class to our Banach space setting and to study the relationship between this concept and the generalised V-prox-regularity of the epigraphs in the sense proposed recently by the authors in [J. Math. Anal. Appl. 2019, 475, 699–29].


2010 ◽  
Vol 03 (01) ◽  
pp. 1-19 ◽  
Author(s):  
Ould Ahmed Mahmoud Sid Ahmed

We introduce the class of m-isometric operators on Banach spaces. This generalizes to Banach space the m-isometric operators on Hilbert space introduced by Agler and Stankus. We establish some basic properties and we introduce the notion of m-invertibility as a natural generalization of the invertibility on Banach spaces.


2011 ◽  
Vol 53 (3) ◽  
pp. 443-449 ◽  
Author(s):  
ANTONÍN SLAVÍK

AbstractThis paper is inspired by a counter example of J. Kurzweil published in [5], whose intention was to demonstrate that a certain property of linear operators on finite-dimensional spaces need not be preserved in infinite dimension. We obtain a stronger result, which says that no infinite-dimensional Banach space can have the given property. Along the way, we will also derive an interesting proposition related to Dvoretzky's theorem.


Sign in / Sign up

Export Citation Format

Share Document