Statistical inference based on large claims via poisson approximation. Part I: Poisson random variables

1989 ◽  
Vol 19 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Rolf-Dieter Reiss
1996 ◽  
Vol 33 (01) ◽  
pp. 146-155 ◽  
Author(s):  
K. Borovkov ◽  
D. Pfeifer

In this paper we consider improvements in the rate of approximation for the distribution of sums of independent Bernoulli random variables via convolutions of Poisson measures with signed measures of specific type. As a special case, the distribution of the number of records in an i.i.d. sequence of length n is investigated. For this particular example, it is shown that the usual rate of Poisson approximation of O(1/log n) can be lowered to O(1/n 2). The general case is discussed in terms of operator semigroups.


2002 ◽  
Vol 34 (03) ◽  
pp. 609-625 ◽  
Author(s):  
N. Papadatos ◽  
V. Papathanasiou

The random variablesX1,X2, …,Xnare said to be totally negatively dependent (TND) if and only if the random variablesXiand ∑j≠iXjare negatively quadrant dependent for alli. Our main result provides, for TND 0-1 indicatorsX1,x2, …,Xnwith P[Xi= 1] =pi= 1 - P[Xi= 0], an upper bound for the total variation distance between ∑ni=1Xiand a Poisson random variable with mean λ ≥ ∑ni=1pi. An application to a generalized birthday problem is considered and, moreover, some related results concerning the existence of monotone couplings are discussed.


1994 ◽  
Vol 26 (04) ◽  
pp. 855-875 ◽  
Author(s):  
Irene Hueter

Consider the convex hull of n independent, identically distributed points in the plane. Functionals of interest are the number of vertices Nn , the perimeter Ln and the area An of the convex hull. We study the asymptotic behaviour of these three quantities when the points are standard normally distributed. In particular, we derive the variances of Nn, Ln and An for large n and prove a central limit theorem for each of these random variables. We enlarge on a method developed by Groeneboom (1988) for uniformly distributed points supported on a bounded planar region. The process of vertices of the convex hull is of central importance. Poisson approximation and martingale techniques are used.


2002 ◽  
Vol 34 (3) ◽  
pp. 609-625 ◽  
Author(s):  
N. Papadatos ◽  
V. Papathanasiou

The random variables X1, X2, …, Xn are said to be totally negatively dependent (TND) if and only if the random variables Xi and ∑j≠iXj are negatively quadrant dependent for all i. Our main result provides, for TND 0-1 indicators X1, x2, …, Xn with P[Xi = 1] = pi = 1 - P[Xi = 0], an upper bound for the total variation distance between ∑ni=1Xi and a Poisson random variable with mean λ ≥ ∑ni=1pi. An application to a generalized birthday problem is considered and, moreover, some related results concerning the existence of monotone couplings are discussed.


Sign in / Sign up

Export Citation Format

Share Document