scholarly journals On bounds in Poisson approximation for integer-valued independent random variables

Author(s):  
Tran Loc Hung ◽  
Le Truong Giang
1986 ◽  
Vol 18 (02) ◽  
pp. 311-340
Author(s):  
Robert P. Kertz

For all uniformly bounded sequences of independent random variablesX1, X2,···, a complete comparison is made between the optimal valueV(X1, X2, ···) = sup {EXt:tis an (a.e.) finite stop rule forX1,X2, ···} and, whereMi(X1,X2, ···) is theith largest order statistic forX1, X2, ··· In particular, fork>1, the set of ordered pairs {(x,y):x=V(X1, X2,···) andfor some independent random variablesX1, X2, ··· taking values in [0, 1]} is precisely the set, whereBk(0) = 0,Bk(1) = 1, and forThe result yields sharp, universal inequalities for independent random variables comparing two choice mechanisms, the mortal&s value of the gameV(X1, X2,···) and the prophet&s constrained maxima expectation of the game. Techniques of proof include probability- and convexity-based reductions; calculus-based, multivariate, extremal problem analysis; and limit theorems of Poisson-approximation type. Precise results are also given for finite sequences of independent random variables.


1990 ◽  
Vol 27 (03) ◽  
pp. 611-621 ◽  
Author(s):  
Hans-Jürgen Witte

Let Sn be a sum of independent random variables. For the approximation of Sn by a Poisson random variable Y with the same mean, the complex analysis approaches based on generating functions and the semigroup approach are presented in a unified setting which permits us to refine Kerstan's complex analysis approach obtaining considerably sharper upper bounds for some metric distances of Sn and Y. These results are applied to some special Sn counting the records of an i.i.d. sequence of random variables which is important to various applied problems, for instance the secretary problem.


1986 ◽  
Vol 18 (2) ◽  
pp. 311-340 ◽  
Author(s):  
Robert P. Kertz

For all uniformly bounded sequences of independent random variables X1, X2, ···, a complete comparison is made between the optimal value V(X1, X2, ···) = sup {EXt:t is an (a.e.) finite stop rule for X1,X2, ···} and , where Mi(X1,X2, ···) is the ith largest order statistic for X1, X2, ··· In particular, for k> 1, the set of ordered pairs {(x, y):x = V(X1, X2, ···) and for some independent random variables X1, X2, ··· taking values in [0, 1]} is precisely the set , where Bk(0) = 0, Bk(1) = 1, and for The result yields sharp, universal inequalities for independent random variables comparing two choice mechanisms, the mortal&s value of the game V(X1, X2, ···) and the prophet&s constrained maxima expectation of the game . Techniques of proof include probability- and convexity-based reductions; calculus-based, multivariate, extremal problem analysis; and limit theorems of Poisson-approximation type. Precise results are also given for finite sequences of independent random variables.


1990 ◽  
Vol 27 (3) ◽  
pp. 611-621 ◽  
Author(s):  
Hans-Jürgen Witte

Let Sn be a sum of independent random variables. For the approximation of Sn by a Poisson random variable Y with the same mean, the complex analysis approaches based on generating functions and the semigroup approach are presented in a unified setting which permits us to refine Kerstan's complex analysis approach obtaining considerably sharper upper bounds for some metric distances of Sn and Y. These results are applied to some special Sn counting the records of an i.i.d. sequence of random variables which is important to various applied problems, for instance the secretary problem.


2020 ◽  
pp. 9-13
Author(s):  
A. V. Lapko ◽  
V. A. Lapko

An original technique has been justified for the fast bandwidths selection of kernel functions in a nonparametric estimate of the multidimensional probability density of the Rosenblatt–Parzen type. The proposed method makes it possible to significantly increase the computational efficiency of the optimization procedure for kernel probability density estimates in the conditions of large-volume statistical data in comparison with traditional approaches. The basis of the proposed approach is the analysis of the optimal parameter formula for the bandwidths of a multidimensional kernel probability density estimate. Dependencies between the nonlinear functional on the probability density and its derivatives up to the second order inclusive of the antikurtosis coefficients of random variables are found. The bandwidths for each random variable are represented as the product of an undefined parameter and their mean square deviation. The influence of the error in restoring the established functional dependencies on the approximation properties of the kernel probability density estimation is determined. The obtained results are implemented as a method of synthesis and analysis of a fast bandwidths selection of the kernel estimation of the two-dimensional probability density of independent random variables. This method uses data on the quantitative characteristics of a family of lognormal distribution laws.


2014 ◽  
Vol 59 (2) ◽  
pp. 553-562 ◽  
Author(s):  
Agnieszka Surowiak ◽  
Marian Brożek

Abstract Settling velocity of particles, which is the main parameter of jig separation, is affected by physical (density) and the geometrical properties (size and shape) of particles. The authors worked out a calculation algorithm of particles settling velocity distribution for irregular particles assuming that the density of particles, their size and shape constitute independent random variables of fixed distributions. Applying theorems of probability, concerning distributions function of random variables, the authors present general formula of probability density function of settling velocity irregular particles for the turbulent motion. The distributions of settling velocity of irregular particles were calculated utilizing industrial sample. The measurements were executed and the histograms of distributions of volume and dynamic shape coefficient, were drawn. The separation accuracy was measured by the change of process imperfection of irregular particles in relation to spherical ones, resulting from the distribution of particles settling velocity.


Sign in / Sign up

Export Citation Format

Share Document