Local time of additive Levy process

2000 ◽  
Vol 5 (1) ◽  
pp. 007-012
Author(s):  
Zhong Yu-quan ◽  
Hu Di-he
2002 ◽  
Vol 22 (2) ◽  
pp. 261-268 ◽  
Author(s):  
Yuquan Zhong ◽  
Dike Hu

2008 ◽  
Vol 40 (04) ◽  
pp. 1072-1103 ◽  
Author(s):  
Takis Konstantopoulos ◽  
Andreas E. Kyprianou ◽  
Paavo Salminen ◽  
Marina Sirviö

We consider a stochastic fluid queue served by a constant rate server and driven by a process which is the local time of a reflected Lévy process. Such a stochastic system can be used as a model in a priority service system, especially when the time scales involved are fast. The input (local time) in our model is typically (but not necessarily) singular with respect to the Lebesgue measure, a situation which, in view of the nonsmooth or bursty nature of several types of Internet traffic, is nowadays quite realistic. We first discuss how to rigorously construct the (necessarily) unique stationary version of the system under some natural stability conditions. We then consider the distribution of performance steady-state characteristics, namely, the buffer content, the idle period, and the busy period. These derivations are much based on the fact that the inverse of the local time of a Markov process is a Lévy process (a subordinator), hence making the theory of Lévy processes applicable. Another important ingredient in our approach is the use of Palm calculus for stationary random point processes and measures.


2008 ◽  
Vol 40 (4) ◽  
pp. 1072-1103 ◽  
Author(s):  
Takis Konstantopoulos ◽  
Andreas E. Kyprianou ◽  
Paavo Salminen ◽  
Marina Sirviö

We consider a stochastic fluid queue served by a constant rate server and driven by a process which is the local time of a reflected Lévy process. Such a stochastic system can be used as a model in a priority service system, especially when the time scales involved are fast. The input (local time) in our model is typically (but not necessarily) singular with respect to the Lebesgue measure, a situation which, in view of the nonsmooth or bursty nature of several types of Internet traffic, is nowadays quite realistic. We first discuss how to rigorously construct the (necessarily) unique stationary version of the system under some natural stability conditions. We then consider the distribution of performance steady-state characteristics, namely, the buffer content, the idle period, and the busy period. These derivations are much based on the fact that the inverse of the local time of a Markov process is a Lévy process (a subordinator), hence making the theory of Lévy processes applicable. Another important ingredient in our approach is the use of Palm calculus for stationary random point processes and measures.


Author(s):  
Fabian A. Harang ◽  
Chengcheng Ling

AbstractWe investigate the space-time regularity of the local time associated with Volterra–Lévy processes, including Volterra processes driven by $$\alpha $$ α -stable processes for $$\alpha \in (0,2]$$ α ∈ ( 0 , 2 ] . We show that the spatial regularity of the local time for Volterra–Lévy process is $${\mathbb {P}}$$ P -a.s. inverse proportional to the singularity of the associated Volterra kernel. We apply our results to the investigation of path-wise regularizing effects obtained by perturbation of ordinary differential equations by a Volterra–Lévy process which has sufficiently regular local time. Following along the lines of Harang and Perkowski (2020), we show existence, uniqueness and differentiability of the flow associated with such equations.


2014 ◽  
Vol 352 (10) ◽  
pp. 859-864 ◽  
Author(s):  
Arturo Kohatsu-Higa ◽  
Eulalia Nualart ◽  
Ngoc Khue Tran
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document