fluid queue
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 12)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
A. H. El-Baz ◽  
A. M. K. Tarabia ◽  
A. M. Darwiesh

Cloud storage faces many problems in the storage process which badly affect the system's efficiency. One of the most problems is insufficient buffer space in cloud storage. This means that the packets of data wait to have storage service which may lead to weakness in performance evaluation of the system. The storage process is considered a stochastic process in which we can determine the probability distribution of the buffer occupancy and the buffer content and predict the performance behavior of the system at any time. This paper modulates a cloud storage facility as a fluid queue controlled by Markovian queue. This queue has infinite buffer capacity which determined by the M/M/1/N queue with constant arrival and service rates. We obtain the analytical solution of the distribution of the buffer occupancy. Moreover, several performance measures and numerical results are given which illustrate the effectiveness of the proposed model.


2020 ◽  
Vol 57 (4) ◽  
pp. 552-565
Author(s):  
Susairaj Sophia ◽  
Babu Muthu Deepika

A fluid queueing system in which the fluid flow in to the buffer is regulated by the state of the background queueing process is considered. In this model, the arrival and service rates follow chain sequence rates and are controlled by an exponential timer. The buffer content distribution along with averages are found using continued fraction methodology. Numerical results are illustrated to analyze the trend of the average buffer content for the model under consideration. It is interesting to note that the stationary solution of a fluid queue driven by a queue with chain sequence rates does not exist in the absence of exponential timer.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1988
Author(s):  
Zbigniew Palmowski

In this paper, I analyze the distributional properties of the busy period in an on-off fluid queue and the first passage time in a fluid queue driven by a finite state Markov process. In particular, I show that the first passage time has a IFR distribution and the busy period in the Anick-Mitra-Sondhi model has a DFR distribution.


Sign in / Sign up

Export Citation Format

Share Document