Effect of vinblastine on the brush border of proximal tubule cells of rat kidney

1976 ◽  
Vol 21 (1) ◽  
Author(s):  
Greta E. Tyson
2005 ◽  
Vol 288 (3) ◽  
pp. F530-F538 ◽  
Author(s):  
Sunita Goyal ◽  
SueAnn Mentone ◽  
Peter S. Aronson

In situ hybridization studies demonstrated that Na+/H+ exchanger NHE8 is expressed in kidney proximal tubules. Although membrane fractionation studies suggested apical brush-border localization, precise membrane localization could not be definitively established. The goal of the present study was to develop isoform-specific NHE8 antibodies as a tool to directly establish the localization of NHE8 protein in the kidney by immunocytochemistry. Toward this goal, two sets of antibodies that label different NHE8 epitopes were developed. Monoclonal antibody 7A11 and polyclonal antibody Rab65 both specifically labeled NHE8 by Western blotting as well as by immunofluorescence microscopy. The immunolocalization pattern in the kidney seen with both antibodies was the same, thereby validating NHE8 specificity. In particular, NHE8 expression was observed on the apical brush-border membrane of all proximal tubules from S1 to S3. The most intense staining was evident in proximal tubules in the deeper cortex and medulla with a significant but somewhat weaker staining in superficial proximal tubules. Colocalization studies with γ-glutamyltranspeptidase and megalin indicated expression of NHE8 on both the microvillar surface membrane and the coated-pit region of proximal tubule cells, suggesting that NHE8 may be subject to endocytic retrieval and recycling. Although colocalizing in the proximal tubule with NHE3, no significant alteration in NHE8 protein expression was evident in NHE3-null mice. We conclude that NHE8 is expressed on the apical brush-border membrane of proximal tubule cells, where it may play a role in mediating or regulating ion transport in this nephron segment.


1997 ◽  
Vol 273 (6) ◽  
pp. F1003-F1012 ◽  
Author(s):  
Dennis Brown ◽  
Richard Lee ◽  
Joseph V. Bonventre

After ischemia and reperfusion, severe alterations in the cytoskeletal organization of renal tubular epithelial cells have been reported. These effects, accompanied by a modification in the polarized distribution of some membrane transport proteins, are especially evident in the proximal tubule. In normal proximal tubule cells, actin is concentrated in apical brush border microvilli, along with the actin-binding protein villin. Because villin plays an important role in actin bundling and in microvillar assembly but can also act as an actin-fragmenting protein at higher calcium concentrations, we examined the effects of ischemic injury and reperfusion on the distribution of villin and actin in proximal tubule cells of rat kidney. Using specific antibodies against villin and actin, we show that these proteins redistribute in parallel from the apical to the basolateral plasma membrane within 1 h of reperfusion after ischemia. Ischemia alone had no effect on the staining pattern. Repolarization of villin to the apical membrane begins within hours after reperfusion with enhanced apical localization over time during the period of regeneration. This apical repolarization of villin is accompanied by the migration of actin back to the apical membrane. These results show not only that villin may be involved in the initial disruption of the actin cytoskeleton during reperfusion injury but also that its migration back to the apical domain of these cells accompanies the reestablishment of a normal actin distribution in the brush border.


2004 ◽  
Vol 287 (2) ◽  
pp. C517-C526 ◽  
Author(s):  
Ruben M. Sandoval ◽  
Michael D. Kennedy ◽  
Philip S. Low ◽  
Bruce A. Molitoris

Intravital two-photon microscopy was used to follow the uptake and trafficking of fluorescent conjugates of folic acid in the rat kidney. Intravenously administered folate-linked dye molecules quickly filled the plasma volume but not cellular components of the blood. Glomerular filtration occurred immediately and binding to proximal tubule cells was seen within seconds. Fluorescence from a pH-insensitive conjugate of folic acid, folate Texas red (FTR), was readily observed on the apical surface of the proximal tubules and in multiple cellular compartments, but little binding or uptake could be detected in any other kidney cells. Fluorescence from a pH-sensitive conjugate of folic acid, folate fluorescein, was seen only on the apical surface of proximal tubule cells, suggesting that internalized folate conjugates are localized to acidic compartments. The majority of the FTR conjugate internalized by proximal tubules accumulated within a lysosomal pool, as determined by colocalization studies. However, portions of FTR were also shown by electron microscopy to undergo transcytosis from apical to basal domains. Additional studies with colchicine, which is known to depolymerize microtubules and interrupt transcytosis, produced a marked reduction in endocytosis of FTR, with accumulation limited to the subapical region of the cell. No evidence of cytosolic release of either folate conjugate was observed, which may represent a key difference from the cytosolic deposition seen in neoplastic cells. Together, these data support the argument that folate conjugates (and, by extrapolation, physiological folate) bind to the apical surface of proximal tubule cells and are transported into and across the cells in endocytic compartments.


1988 ◽  
Vol 252 (1) ◽  
pp. 105-109 ◽  
Author(s):  
M Jahan ◽  
P J Butterworth

1. Proximal-tubule cells isolated from mouse kidney after digestion with collagenase take up Pi by an Na+-dependent and saturable process mediated by the Na+-Pi co-transporter of the brush-border membrane. 2. Pi depletion of the cells is accompanied by a stimulation of Pi-transport activity. Kinetic investigations reveal that Vmax. is increased by 90% and Km decreased by 50% after Pi depletion. Transport activity returns to normal values after incubation for 30 min at 37 degrees C of Pi-depleted cells in normal medium containing 1 mM-Pi, but the fall in transport activity under these conditions is inhibited by colchicine. 3. The energy of activation of Na+-Pi co-transport activity of depleted cells differs greatly from that found for normal replete cells. 4. The results provide evidence that stimulation of transport by Pi depletion arises from an increase in the number of carrier sites in the brush-border membrane. Additionally, changes in the properties of the transporter occur which may reflect altered phospholipid-carrier-protein interaction in the Pi-depleted condition.


1976 ◽  
Vol 22 (1) ◽  
pp. 111-120
Author(s):  
B. F. Trump ◽  
I. K. Berezesky ◽  
S. H. Chang ◽  
R. E. Bulger

Sign in / Sign up

Export Citation Format

Share Document