scholarly journals Solving the Subset-Sum problem by P systems with active membranes

2005 ◽  
Vol 23 (4) ◽  
pp. 339-356 ◽  
Author(s):  
Mario J. Pérez Jiménez ◽  
Agustín Riscos Núñez
Author(s):  
Francis George C. Cabarle ◽  
Nestine Hope S. Hernandez ◽  
Miguel Ángel Martínez-del-Amor

2015 ◽  
Vol 27 (1) ◽  
pp. 17-32 ◽  
Author(s):  
BOSHENG SONG ◽  
TAO SONG ◽  
LINQIANG PAN

Tissue P systems are a class of bio-inspired computing models motivated by biochemical interactions between cells in a tissue-like arrangement. Tissue P systems with cell division offer a theoretical device to generate an exponentially growing structure in order to solve computationally hard problems efficiently with the assumption that there exists a global clock to mark the time for the system, the execution of each rule is completed in exactly one time unit. Actually, the execution time of different biochemical reactions in cells depends on many uncertain factors. In this work, with this biological inspiration, we remove the restriction on the execution time of each rule, and the computational efficiency of tissue P systems with cell division is investigated. Specifically, we solve subset sum problem by tissue P systems with cell division in a time-free manner in the sense that the correctness of the solution to the problem does not depend on the execution time of the involved rules.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Liping Wang ◽  
Xiyu Liu ◽  
Yuzhen Zhao

The nonlinear spiking neural P systems (NSNP systems) are new types of computation models, in which the state of neurons is represented by real numbers, and nonlinear spiking rules handle the neuron’s firing. In this work, in order to improve computing performance, the weights and delays are introduced to the NSNP system, and universal nonlinear spiking neural P systems with delays and weights on synapses (NSNP-DW) are proposed. Weights are treated as multiplicative constants by which the number of spikes is increased when transiting across synapses, and delays take into account the speed at which the synapses between neurons transmit information. As a distributed parallel computing model, the Turing universality of the NSNP-DW system as number generating and accepting devices is proven. 47 and 43 neurons are sufficient for constructing two small universal NSNP-DW systems. The NSNP-DW system solving the Subset Sum problem is also presented in this work.


1990 ◽  
Vol 21 (2) ◽  
pp. 1-10
Author(s):  
Toshiro Tachibana ◽  
Hideo Nakano ◽  
Yoshiro Nakanishi ◽  
Mitsuru Nakao

Author(s):  
Andrea Valsecchi ◽  
Antonio E. Porreca ◽  
Alberto Leporati ◽  
Giancarlo Mauri ◽  
Claudio Zandron

Sign in / Sign up

Export Citation Format

Share Document