cell division
Recently Published Documents


TOTAL DOCUMENTS

10606
(FIVE YEARS 1583)

H-INDEX

194
(FIVE YEARS 15)

Author(s):  
K Saranya ◽  
◽  
V Manivasagan ◽  
K Gopi ◽  
K Karthik ◽  
...  

Cancer is an abnormal and uncontrolled growth of cells that spreads through cell division. There are different types of medicines available to treat cancers, but no drug is found to be fully effective and safe for humans. The major problem involved in the cancer treatments is the toxicity of the established drug and their side effects. Medicinal plants are used as folk medicines in Asian and African populations for thousands of years. 60% of the drugs for treating cancer are derived from plants. More than 3000 plants have anticancer activity. The present review aims at the study of a broad spectrum survey of plants having anticancer components for different type of cancers. This article consists of 364 medicinal plants and their different parts as potential Source of Anticancer Agents.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Thomas S McAlear ◽  
Susanne Bechstedt

Cells increase microtubule dynamics to make large rearrangements to their microtubule cytoskeleton during cell division. Changes in microtubule dynamics are essential for the formation and function of the mitotic spindle, and misregulation can lead to aneuploidy and cancer. Using in vitro reconstitution assays we show that the mitotic spindle protein Cytoskeleton-Associated Protein 2 (CKAP2) has a strong effect on nucleation of microtubules by lowering the critical tubulin concentration 100-fold. CKAP2 increases the apparent rate constant ka of microtubule growth by 50-fold and increases microtubule growth rates. In addition, CKAP2 strongly suppresses catastrophes. Our results identify CKAP2 as the most potent microtubule growth factor to date. These finding help explain CKAP2's role as an important spindle protein, proliferation marker, and oncogene.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262632
Author(s):  
Tsukasa Nakatoh ◽  
Takuji Osaki ◽  
Sohma Tanimoto ◽  
Md. Golam Sarowar Jahan ◽  
Tomohisa Kawakami ◽  
...  

In the field of cell and tissue engineering, there is an increasing demand for techniques to spatially control the adhesion of cells to substrates of desired sizes and shapes. Here, we describe two novel methods for fabricating a substrate for adhesion of cells to a defined area. In the first method, the surface of the coverslip or plastic dish was coated with Lipidure, a non-adhesive coating material, and air plasma was applied through a mask with holes, to confer adhesiveness to the surface. In the second method, after the surface of the coverslip was coated with gold by sputtering and then with Lipidure; the Lipidure coat was locally removed using a novel scanning laser ablation method. These methods efficiently confined cells within the adhesive area and enabled us to follow individual cells for a longer duration, compared to the currently available commercial substrates. By following single cells within the confined area, we were able to observe several new aspects of cell behavior in terms of cell division, cell–cell collisions, and cell collision with the boundary between adhesive and non-adhesive areas.


2022 ◽  
Author(s):  
Allyssa K. Miller ◽  
Jennifer K Herman

During sporulation, Bacillus subtilis undergoes an atypical cell division that requires overriding mechanisms which protect chromosomes from damage and ensure inheritance by daughter cells. Instead of assembling between segregated chromosomes at midcell, the FtsZ-ring (Z-ring) coalesces polarly, directing division over one chromosome. The DNA-binding protein RefZ facilitates the timely assembly of polar Z-rings and partially defines the region of chromosome initially captured in the forespore. RefZ binds to motifs (RBMs) located proximal to the origin of replication (oriC). Although refZ and the RBMs are conserved across the Bacillus genus, a refZ deletion mutant sporulates with wildtype efficiency, so the functional significance of RefZ during sporulation remains unclear. To further investigate RefZ function, we performed a candidate-based screen for synthetic sporulation defects by combining ∆refZ with deletions of genes previously implicated in FtsZ regulation and/or chromosome capture. Combining ∆refZ with deletions of ezrA, sepF, parA, or minD did not detectably affect sporulation. In contrast, a ∆refZ ∆noc mutant exhibited a sporulation defect, revealing a genetic interaction between RefZ and Noc. Using reporters of sporulation progression, we determined the ∆refZ ∆noc mutant exhibited sporulation delays after Spo0A activation but prior to late sporulation, with a subset of cells failing to divide polarly or activate the first forespore-specific sigma factor, SigF. The ∆refZ ∆noc mutant also exhibited extensive dysregulation of cell division, producing cells with extra, misplaced, or otherwise aberrant septa. Our results reveal a previously unknown epistatic relationship that suggests refZ and noc contribute synthetically to regulating cell division and supporting spore development.


Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
Author(s):  
Anne Fassl ◽  
Yan Geng ◽  
Piotr Sicinski

Targeting cyclin-dependent kinases Cyclin-dependent kinases (CDKs), in complex with their cyclin partners, modulate the transition through phases of the cell division cycle. Cyclin D–CDK complexes are important in cancer progression, especially for certain types of breast cancer. Fassl et al . discuss advances in understanding the biology of cyclin D–CDK complexes that have led to new concepts about how drugs that target these complexes induce cancer cell cytostasis and suggest possible combinations to widen the types of cancer that can be treated. They also discuss progress in overcoming resistance to cyclin D–CDK inhibitors and their possible application to diseases beyond cancer. —GKA


2022 ◽  
Vol 119 (3) ◽  
pp. e2108641119
Author(s):  
Chunhua Wang ◽  
Meng Li ◽  
Yang Zhao ◽  
Nengsong Liang ◽  
Haiyang Li ◽  
...  

Nitrogen fixation in soybean takes place in root nodules that arise from de novo cell divisions in the root cortex. Although several early nodulin genes have been identified, the mechanism behind the stimulation of cortical cell division during nodulation has not been fully resolved. Here we provide evidence that two paralogs of soybean SHORT-ROOT (GmSHR) play vital roles in soybean nodulation. Expression of GmSHR4 and GmSHR5 (GmSHR4/5) is induced in cortical cells at the beginning of nodulation, when the first cell divisions occur. The expression level of GmSHR4/5 is positively associated with cortical cell division and nodulation. Knockdown of GmSHR5 inhibits cell division in outer cortical layers during nodulation. Knockdown of both paralogs disrupts the cell division throughout the cortex, resulting in poorly organized nodule primordia with delayed vascular tissue formation. GmSHR4/5 function by enhancing cytokinin signaling and activating early nodulin genes. Interestingly, D-type cyclins act downstream of GmSHR4/5, and GmSHR4/5 form a feedforward loop regulating D-type cyclins. Overexpression of D-type cyclins in soybean roots also enhanced nodulation. Collectively, we conclude that the GmSHR4/5-mediated pathway represents a vital module that triggers cytokinin signaling and activates D-type cyclins during nodulation in soybean.


2022 ◽  
Author(s):  
Matthew R Hannaford ◽  
Rong Liu ◽  
Neil Billington ◽  
Zachary T Swider ◽  
Brian J Galletta ◽  
...  

Centrosome positioning is essential for their function. Typically, centrosomes are transported to various cellular locations through the interaction of centrosome nucleated microtubules with motor proteins. However, it remains unknown how centrioles migrate in cellular contexts in which centrioles do not nucleate microtubules. Here, we demonstrate that during interphase inactive centrioles move directly along the noncentrosomal microtubule network as cargo for the motor protein Kinesin-1. We identify Pericentrin-Like-Protein (PLP) as a novel Kinesin-1 interacting molecule essential for centriole motility. PLP directly interacts with the cargo binding domain of Kinesin-1 and they comigrate on microtubules in vitro. Finally, we demonstrate that PLP-Kinesin-1 dependent transport is essential for centrosome asymmetry age dependent centrosome inheritance in asymmetric stem cell division.


2022 ◽  
Author(s):  
Scot P Ouellette ◽  
Laura A Fisher-Marvin ◽  
McKenna Harpring ◽  
Junghoon Lee ◽  
Elizabeth A Rucks ◽  
...  

Pathogenic Chlamydia species are coccoid bacteria that use the rod-shape determining protein MreB to direct septal peptidoglycan synthesis during their polarized cell division process. How the site of polarized budding is determined in this bacterium, where contextual features like membrane curvature are seemingly identical, is unclear. We hypothesized that the accumulation of the phospholipid, cardiolipin (CL), in specific regions of the cell membrane induces localized membrane changes that trigger the recruitment of MreB to the site where the bud will arise. To test this, we ectopically expressed cardiolipin synthase (Cls) and observed a polar distribution for this enzyme in Chlamydia trachomatis. In early division intermediates, Cls was restricted to the bud site where MreB is localized and peptidoglycan synthesis is initiated. The localization profile of Cls throughout division mimicked the distribution of lipids that stain with NAO, a dye that labels CL. Treatment of Chlamydia with 3-,6-dinonylneamine (diNN), an antibiotic targeting CL-containing membrane domains, resulted in redistribution of Cls and NAO-staining phospholipids. In addition, MreB localization was altered by diNN treatment, suggesting an upstream regulatory role for CL-containing membranes in directing the assembly of MreB. This hypothesis is consistent with the observation that the clustered localization of Cls is not dependent upon MreB function or peptidoglycan synthesis. Furthermore, expression of a CL-binding protein at the inner membrane of C. trachomatis dramatically inhibited bacterial growth supporting the importance of CL in the division process. Our findings implicate a critical role for localized CL synthesis in driving MreB assembly at the bud site during the polarized cell division of Chlamydia.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Matthew J. Bush ◽  
Kelley A. Gallagher ◽  
Govind Chandra ◽  
Kim C. Findlay ◽  
Susan Schlimpert

AbstractFilamentous actinobacteria such as Streptomyces undergo two distinct modes of cell division, leading to partitioning of growing hyphae into multicellular compartments via cross-walls, and to septation and release of unicellular spores. Specific determinants for cross-wall formation and the importance of hyphal compartmentalization for Streptomyces development are largely unknown. Here we show that SepX, an actinobacterial-specific protein, is crucial for both cell division modes in Streptomyces venezuelae. Importantly, we find that sepX-deficient mutants grow without cross-walls and that this substantially impairs the fitness of colonies and the coordinated progression through the developmental life cycle. Protein interaction studies and live-cell imaging suggest that SepX contributes to the stabilization of the divisome, a mechanism that also requires the dynamin-like protein DynB. Thus, our work identifies an important determinant for cell division in Streptomyces that is required for cellular development and sporulation.


Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 82
Author(s):  
Qiuhong Niu ◽  
Suyao Liu ◽  
Mingshen Yin ◽  
Shengwei Lei ◽  
Fabio Rezzonico ◽  
...  

Symbiotic microorganisms in the intestinal tract can influence the general fitness of their hosts and contribute to protecting them against invading pathogens. In this study, we obtained isolate Phytobacter diazotrophicus SCO41 from the gut of free-living nematode Caenorhabditis elegans that displayed strong colonization-resistance against invading biocontrol bacterium Bacillus nematocida B16. The colonization-resistance phenotype was found to be mediated by a 37-kDa extracellular protein that was identified as flagellin (FliC). With the help of genome information, the fliC gene was cloned and heterologously expressed in E. coli. It could be shown that the B. nematocida B16 grows in chains rather than in planktonic form in the presence of FliC. Scanning Electronic Microscopy results showed that protein FliC-treated B16 bacterial cells are thinner and longer than normal cells. Localization experiments confirmed that the protein FliC is localized in both the cytoplasm and the cell membrane of B16 strain, in the latter especially at the position of cell division. ZDOCK analysis showed that FliC could bind with serine/threonine protein kinase, membrane protein insertase YidC and redox membrane protein CydB. It was inferred that FliC interferes with cell division of B. nematocidal B16, therefore inhibiting its colonization of C. elegans intestines in vivo. The isolation of P. diazotrophicus as part of the gut microbiome of C. elegans not only provides interesting insights about the lifestyle of this nitrogen-fixing bacterium, but also reveals how the composition of the natural gut microbiota of nematodes can affect biological control efforts by protecting the host from its natural enemies.


Sign in / Sign up

Export Citation Format

Share Document