subset sum
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 56)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Bahram Sadeghi Bigham

In the minimum constraint removal ([Formula: see text]), there is no feasible path to move from a starting point towards the goal, and the minimum constraints should be removed in order to find a collision-free path. It has been proved that [Formula: see text] problem is NP-hard when constraints have arbitrary shapes or even they are in shape of convex polygons. However, it has a simple linear solution when constraints are lines and the problem is open for other cases yet. In this paper, using a reduction from Subset Sum problem, in three steps, we show that the problem is NP-hard for both weighted and unweighted line segments.


2022 ◽  
pp. 1661-1678
Author(s):  
Lijie Chen ◽  
Ce Jin ◽  
R. Ryan Williams ◽  
Hongxun Wu
Keyword(s):  

2021 ◽  
Vol 65 (8) ◽  
Author(s):  
Qilin Zheng ◽  
Pingyu Zhu ◽  
Shichuan Xue ◽  
Yang Wang ◽  
Chao Wu ◽  
...  

2021 ◽  
Vol 28 (04) ◽  
pp. 569-580
Author(s):  
Xiaofan Xu ◽  
Shaofang Hong

Reed–Solomon codes are widely used to establish a reliable channel to transmit information in digital communication which has a strong error correction capability and a variety of efficient decoding algorithm. Usually we use the maximum likelihood decoding (MLD) algorithm in the decoding process of Reed–Solomon codes. MLD algorithm relies on determining the error distance of received word. Dür, Guruswami, Wan, Li, Hong, Wu, Yue and Zhu et al. got some results on the error distance. For the Reed–Solomon code [Formula: see text], the received word [Formula: see text] is called an ordinary word of [Formula: see text] if the error distance [Formula: see text] with [Formula: see text] being the Lagrange interpolation polynomial of [Formula: see text]. We introduce a new method of studying the ordinary words. In fact, we make use of the result obtained by Y.C. Xu and S.F. Hong on the decomposition of certain polynomials over the finite field to determine all the ordinary words of the standard Reed–Solomon codes over the finite field of [Formula: see text] elements. This completely answers an open problem raised by Li and Wan in [On the subset sum problem over finite fields, Finite Fields Appl. 14 (2008) 911–929].


2021 ◽  
Vol 23 (9) ◽  
pp. 095007
Author(s):  
Michael Konopik ◽  
Till Korten ◽  
Heiner Linke ◽  
Eric Lutz

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Liping Wang ◽  
Xiyu Liu ◽  
Yuzhen Zhao

The nonlinear spiking neural P systems (NSNP systems) are new types of computation models, in which the state of neurons is represented by real numbers, and nonlinear spiking rules handle the neuron’s firing. In this work, in order to improve computing performance, the weights and delays are introduced to the NSNP system, and universal nonlinear spiking neural P systems with delays and weights on synapses (NSNP-DW) are proposed. Weights are treated as multiplicative constants by which the number of spikes is increased when transiting across synapses, and delays take into account the speed at which the synapses between neurons transmit information. As a distributed parallel computing model, the Turing universality of the NSNP-DW system as number generating and accepting devices is proven. 47 and 43 neurons are sufficient for constructing two small universal NSNP-DW systems. The NSNP-DW system solving the Subset Sum problem is also presented in this work.


Sign in / Sign up

Export Citation Format

Share Document