Assessment of resistance and virulence in the pathosystem sugar beet (Beta vulgaris)/powdery mildew (Erysiphe betae) — development of basics for an effective powdery mildew resistance breeding

2010 ◽  
Vol 117 (2) ◽  
pp. 49-54
Author(s):  
L. Kontradowitz ◽  
J. -A. Verreet
Plant Disease ◽  
2001 ◽  
Vol 85 (6) ◽  
pp. 627-631 ◽  
Author(s):  
R. T. Lewellen ◽  
J. K. Schrandt

Powdery mildew of sugar beet (Beta vulgaris), caused by Erysiphe polygoni, was introduced into North American in 1974. Since then, chemical control has been needed. Moderate resistance of a slow-mildewing type is known and has been used commercially. High resistance was identified recently in B. vulgaris subsp. maritima accessions WB97 and WB242 and has been backcrossed into sugar beet breeding lines. These enhanced lines were used as sources of powdery mildew resistance to determine the inheritance of resistance. Analyses of segregating testcross families showed that resistance from both sources is inherited as a single, dominant, major gene. The gene symbol Pm is proposed for the resistant allele. The allelism of the resistance from the two wild beet sources was not determined. Pm conditions a high level of resistance, but disease developed on matured leaves late in the season. This late development of mildew on lines and the slow-mildewing trait in susceptible, recurrent lines tended to obfuscate discrete disease ratings.


Plant Disease ◽  
2021 ◽  
Author(s):  
Huanhuan Li ◽  
Xiubin Tian ◽  
Shaolong Pei ◽  
Wenqiang Men ◽  
Chao Ma ◽  
...  

Powdery mildew of wheat, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease of wheat. Cultivation of resistant varieties is the most cost-effective disease management strategy. Previous studies reported that chromosome 3Sl#2 present in Chinese Spring (CS)-Aegilops longissima 3Sl#2(3B) disomic substitution line TA3575 conferred resistance to powdery mildew. In this study, we further located the powdery mildew resistance gene(s) to the short arm of chromosome 3Sl#2 (3Sl#2S) by evaluating for Bgt-resistance of newly developed CS-Ae. longissima 3Sl#2 translocation lines. Meanwhile, TA7545, a previously designated CS-Ae. longissima 3Sl#3 disomic addition line, was re-identified as an isochromosome 3Sl#3S addition line and evaluated to confer resistance to powdery mildew, thus locating the resistance gene(s) to the short arm of chromosome 3Sl#3 (3Sl#3S). Based on transcriptome sequences of TA3575, ten novel chromosome 3SlS-specific markers were developed, of which, five could be used to distinguish between 3Sl#2S and 3Sl#3S derived from Ae. longissima accessions TL20 and TA1910 (TAM4), and the remaining five could identify both 3Sl#2S and 3Sl#3S. Besides, CL897, one of five markers specific to both 3Sl#2S and 3Sl#3S, could be used to detect Pm13 located at chromosome 3Sl#1S from Ae. longissima accession TL01 in diverse wheat genetic backgrounds. The powdery mildew resistance genes on chromosomes 3Sl#2S and 3Sl#3S, the CS-Ae. longissima 3Sl#2 translocation lines, and the 3SlS-specific markers developed in this study will provide new germplasm resources for powdery mildew resistance breeding and facilitate the transfer of Bgt-resistance genes into common wheat.


2007 ◽  
pp. 275-283 ◽  
Author(s):  
L. Leus ◽  
J. Van Huylenbroeck ◽  
F. Rys ◽  
A. Dewitte ◽  
E. Van Bockstaele ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Qiang Zhang ◽  
Yinghui Li ◽  
Yiwen Li ◽  
Tzion Fahima ◽  
Qian-Hua Shen ◽  
...  

Powdery mildew, caused by the fungus Blumeria graminis f. sp. tritici (Bgt), has limited wheat yields in many major wheat-production areas across the world. Introducing resistance genes from wild relatives into cultivated wheat can enrich the genetic resources for disease resistance breeding. The powdery mildew resistance gene Pm60 was first identified in diploid wild wheat Triticum urartu (T. urartu). In this study, we used durum as a ‘bridge’ approach to transfer Pm60 and Pm60b into hexaploid common wheat. Synthetic hexaploid wheat (SHW, AABBAuAu), developed by crossing T. urartu (AuAu) with durum (AABB), was used for crossing and backcrossing with common wheat. The Pm60 alleles were tracked by molecular markers and the resistance to powdery mildew. From BC1F1 backcross populations, eight recombinant types were identified based on five Pm60-flanking markers, which indicated different sizes of the introgressed chromosome segments from T. urartu. Moreover, we have selected two resistance-harboring introgression lines with high self-fertility, which could be easily used in wheat breeding system. Our results showed that the durum was an excellent ‘bridge’ for introducing the target gene from diploid T. urartu into the hexaploid cultivated wheat. Moreover, these introgression lines could be deployed in wheat resistance breeding programs, together with the assistance of the molecular markers for Pm60 alleles.


2013 ◽  
Vol 41 (2) ◽  
pp. 485 ◽  
Author(s):  
Muhammad Abubakkar AZMAT ◽  
Asif Ali KHAN

The knowledge about the nature and number of gene(s) controlling resistance is the pre-requisite for the success of powdery mildew resistance breeding program in pea. Seven biparental cross combinations involving three highly resistant (It-96, No. 267 and JI 2302) and two highly susceptible (Climax and PF-400) pea genotypes were evaluated for their response to powdery mildew disease. The quantitative microscopic scale of disease assessment coupled with detached leaf assay was employed for the evaluation of disease response of the crosses and their generations (F1, F2, BCs, and BCr) against two highly virulent conidial isolates of Erysiphe pisi. The disease response of 677 F2 plants has revealed a typical monohybrid Mendelian 3 (susceptible): 1 (resistant) segregation, moreover, the evaluation of 254 BCr plants gave a perfect 1 (susceptible): 1(resistant) segregation. No complementation was observed among all the F1 plants of three complementation crosses, suggesting that the same allele (er-1) conditions complete and broad-spectrum resistance in all the powdery mildew resistant pea genotypes in homozygous recessive form.


2009 ◽  
Vol 35 (5) ◽  
pp. 761-767 ◽  
Author(s):  
Gen-Qiao LI ◽  
Ti-Lin FANG ◽  
Hong-Tao ZHANG ◽  
Chao-Jie XIE ◽  
Zuo-Min YANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document