addition line
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 33)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Vol 19 (3) ◽  
pp. pp213-225
Author(s):  
Venkat Ram Raj Thumiki ◽  
Ana Jurcic

This research was conducted with the aim of identifying various changes made to knowledge management (KM) practices implemented by organizations in the Sultanate of Oman following the onset of the COVID-19 crisis. Further, the study focused on identifying the impact of those changes on various aspects of human resources management. Snowball and purposive sampling techniques were used to collect relevant data from 110 line managers in various organizations in the Sultanate of Oman. Data were analyzed using descriptive statistics and Chi-squared and post-hoc tests. The Bonferroni correction method was adopted to reduce the risk of Type I error. The findings indicated that organizations started utilizing an inside-out approach to KM after the COVID-19 crisis began, shifted KM process from manual to computer-based and spending from conventional to e-KM activities. Key finding is that the organizations demonstrated an increased dependency on internal knowledge sources. In addition, line managers began measuring the effectiveness of KM practices, a metric which had been mostly neglected in the pre-pandemic period.  Perceived benefits of these changes included increased employee motivation and engagement, increased employee learning and job-related skill, along with an enhanced knowledge-sharing culture across the organization. Important measures taken to mitigate the perceived negative impact of these changes, or enhance the perceived positive impact, included consistent persuasive communication with employees and identifying alternate financial resources to support KM activities. This research contributes to the field of KM and projects it as a supportive discipline to effective crisis management. Findings of this research can help in identifying the areas of training and improvements in the KM framework. This research is global and topical in nature as it relates to the e-KM practices during the ongoing global COVID-19 crisis and portrays the changing e-learning scenario in the organizations in Oman, one of the prominent countries in the middle east and represents the middle east regional culture and economy.


2021 ◽  
Author(s):  
He Liu ◽  
Xiaoxue Du ◽  
Jialin Zhang ◽  
Jinna Li ◽  
Sixue Chen ◽  
...  

Abstract Background: Salt stress is often associated with excessive production of reactive oxygen species (ROS). Oxidative stress caused by the accumulation of ROS is a major factor that negatively affects crop growth and yield. Root is the primary organ that senses and transmits the salt stress signal to the whole plant. How oxidative stress affect redox sensitive proteins in the roots is not known.Results: In this study, the redox proteome of sugar beet M14 roots under salt stress was investigated. Using iTRAQ reporters, we determined that salt stress caused significant changes in the abundance of many proteins (2305 at 20 min salt stress and 2663 at 10 min salt stress). Using iodoTMT reporters, a total of 95 redox proteins were determined to be responsive to salt stress after normalizing again total protein level changes. Notably, most of the differential redox proteins were involved in metabolism, ROS homeostasis, and stress and defense, while a small number play a role in transport, biosynthesis, signal transduction, transcription and photosynthesis. Transcription levels of 14 genes encoding the identified redox proteins were analyzed using qRT-PCR. All the genes were induced by salt stress at the transcriptional level. Conclusions: Based on the redox proteomics results, we construct a map of the regulatory network of M14 root redox proteins in response to salt stress. This study further refines the molecular mechanism of salt resistance at the level of protein redox regulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Binwen Tan ◽  
Lei Zhao ◽  
Lingyu Li ◽  
Hao Zhang ◽  
Wei Zhu ◽  
...  

Early maturation is an important objective in wheat breeding programs that could facilitate multiple-cropping systems, decrease disaster- and disease-related losses, ensure stable wheat production, and increase economic benefits. Exploitation of novel germplasm from wild relatives of wheat is an effective means of breeding for early maturity. Psathyrostachys huashanica Keng f. ex P. C. KUO (2n=2x=14, NsNs) is a promising source of useful genes for wheat genetic improvement. In this study, we characterized a novel wheat-P. huashanica line, DT23, derived from distant hybridization between common wheat and P. huashanica. Fluorescence in situ hybridization (FISH) and sequential genomic in situ hybridization (GISH) analyses indicated that DT23 is a stable wheat-P. huashanica ditelosomic addition line. FISH painting and PCR-based landmark unique gene markers analyses further revealed that DT23 is a wheat-P. huashanica 7Ns ditelosomic addition line. Observation of spike differentiation and the growth period revealed that DT23 exhibited earlier maturation than the wheat parents. This is the first report of new earliness per se (Eps) gene(s) probably associated with a group 7 chromosome of P. huashanica. Based on specific locus-amplified fragment sequencing technology, 45 new specific molecular markers and 19 specific FISH probes were developed for the P. huashanica 7Ns chromosome. Marker validation analyses revealed that two specific markers distinguished the Ns genome chromosomes of P. huashanica and the chromosomes of other wheat-related species. These newly developed FISH probes specifically detected Ns genome chromosomes of P. huashanica in the wheat background. The DT23 line will be useful for breeding early maturing wheat. The specific markers and FISH probes developed in this study can be used to detect and trace P. huashanica chromosomes and chromosomal segments carrying elite genes in diverse materials.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yongfu Wang ◽  
Xiaofang Cheng ◽  
Xiaoying Yang ◽  
Changyou Wang ◽  
Hong Zhang ◽  
...  

Abstract Background Aegilops geniculata Roth is closely related to common wheat (Triticum aestivum L.) and is a valuable genetic resource for improvement of wheat. Results In this study, the W19513 line was derived from the BC1F10 progeny of a cross between wheat ‘Chinese Spring’ and Ae. geniculata SY159. Cytological examination showed that W19513 contained 44 chromosomes. Twenty-two bivalents were formed at the first meiotic metaphase I in the pollen mother cellsand the chromosomes were evenly distributed to opposite poles at meiotic anaphase I. Genomic in situ hybridization demonstrated that W19513 carried a pair of alien chromosomes from the M genome. Fluorescence in situ hybridization confirmed detection of variation in chromosomes 4A and 6B. Functional molecular marker analysis using expressed sequence tag–sequence-tagged site and PCR-based landmark unique gene primers revealed that the alien gene belonged to the third homologous group. The marker analysis confirmed that the alien chromosome pair was 3Mg. In addition, to further explore the molecular marker specificity of chromosome 3Mg, based on the specific locus amplified fragment sequencing technique, molecular markers specific for W19513 were developed with efficiencies of up to 47.66%. The W19513 line was inoculated with the physiological race E09 of powdery mildew (Blumeria graminis f. sp. tritici) at the seedling stage and showed moderate resistance. Field inoculation with a mixture of the races CYR31, CYR32, CYR33, and CYR34 of the stripe rust fungus (Puccinia striiformis f. sp. triticii) revealed that the line W19513 showed strong resistance. Conclusions This study provides a foundation for use of the line W19513 in future genetic research and wheat improvement.


2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Jinna Li ◽  
Kun Wang ◽  
Meichao Ji ◽  
Tingyue Zhang ◽  
Chao Yang ◽  
...  

Abstract Background Salt stress is a major abiotic stress that limits plant growth, development and productivity. Studying the molecular mechanisms of salt stress tolerance may help to enhance crop productivity. Sugar beet monosomic addition line M14 exhibits tolerance to salt stress. Results In this work, the changes in the BvM14 proteome and redox proteome induced by salt stress were analyzed using a multiplex iodoTMTRAQ double labeling quantitative proteomics approach. A total of 80 proteins were differentially expressed under salt stress. Interestingly, A total of 48 redoxed peptides were identified for 42 potential redox-regulated proteins showed differential redox change under salt stress. A large proportion of the redox proteins were involved in photosynthesis, ROS homeostasis and other pathways. For example, ribulose bisphosphate carboxylase/oxygenase activase changed in its redox state after salt treatments. In addition, three redox proteins involved in regulation of ROS homeostasis were also changed in redox states. Transcription levels of eighteen differential proteins and redox proteins were profiled. (The proteomics data generated in this study have been submitted to the ProteomeXchange and can be accessed via username: [email protected], password: q9YNM1Pe and proteomeXchange# PXD027550.) Conclusions The results showed involvement of protein redox modifications in BvM14 salt stress response and revealed the short-term salt responsive mechanisms. The knowledge may inform marker-based breeding effort of sugar beet and other crops for stress resilience and high yield.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 271
Author(s):  
Elmahdy Metwally ◽  
Mohamed Sharshar ◽  
Ali Masoud ◽  
Ali Masry ◽  
Atef Fiad ◽  
...  

Cowpea [Vigna unguiculata (L.) Walp.] is a major legume crop and an important source of protein in Africa. The Kafr El-Sheikh University has a long history of cowpea breeding and improvement in Egypt. Two superior lines with high seed yield and quality were selected through mutation breeding and released to farmers as new varieties under the names Kafr El Sheikh-1 and Kaha-1. Crosses were made between these two varieties to further improve cowpea to meet farmers’ demand. Using the pedigree selection method, 13 new superior F10 lines were selected and evaluated over 2 years for seed yield and related traits, earliness, and protein content under low (16 plants/m2) and high (24 plants/m2) plant densities. The results showed that plants grown in narrower space produced significantly higher seed yield per unit area than the plants grown in wider space. All developed lines produced significantly higher seed yield than the two parental lines in the 2018 trial and Kaha-1 in the 2019 trial. Line number 6 proved to be the best genotype for earliness (73.5–73.9 days after sowing), seed yield (573–647 g/m2), and crude protein content (22.7–24.3%) in both trials. In addition, line 4 with bushy determinate growth habit and high seed quality was recently released as a new variety (Sakha-1). Several other cowpea lines have clear potential for release as new high-yielding varieties with early maturity and high seed quality for farmers in Egypt. Seeds of selected lines are available from Kafrelsheikh University. This shows that mutation breeding and pedigree selection methods are among the most promising breeding methods for cowpea improvement.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1695
Author(s):  
Xu Zhang ◽  
Wentao Wan ◽  
Mengli Li ◽  
Zhongyu Yu ◽  
Jia Liu ◽  
...  

The short arm of chromosome 6V (6VS) of Haynaldia villosa has been used in wheat breeding programs to introduce Pm21 resistance gene against powdery mildew (Pm) and some other genes. In this this study, 6VS was flow-sorted from wheat-H. villosa ditelosomic addition line Dt6VS and sequenced by Illumina technology. An assembly of 230.39 Mb was built with contig N50 of 9.788 bp. In total, 3.276 high-confidence genes were annotated and supported by RNA sequencing data. Repetitive elements represented 74.91% of the 6VS assembly. The 6VS homologous genes were identified on homologous group 6 in six Triticeae species confirming their synteny relationships. Out of 45 NB-ARC domain proteins identified on 6VS, 15 were upregulated and might also be involved in the innate immunity of H. villosa to Pm. High thousand grain weight (TGW) for 6VS/6AL translocation line was not attributable to GW2-6V gene. Based on the intron size differences, 119 intron-target (IT) markers were developed to trace the 6VS chromatins introduced into wheat background. The assembled 6VS genome sequence and the developed 6VS specific IT markers in this work will facilitate the gene mining and utilization of agronomic important genes on 6VS.


2021 ◽  
Author(s):  
Yongfu Wang ◽  
Xiaofang Cheng ◽  
Xiaoying Yang ◽  
Changyou Wang ◽  
Hong Zhang ◽  
...  

Abstract Background: Aegilops geniculata Roth is closely related to common wheat (Triticum aestivum L.) and is a valuable genetic resource for improvement of wheat. Results: In this study, the W19513 line was derived from the BC1F10 progeny of a cross between wheat ‘Chinese Spring’ and Ae. geniculata SY159. Cytological examination showed that W19513 contained 44 chromosomes. Twenty-two bivalents were formed at the first meiotic metaphase in the pollen mother cells, and the chromosomes were evenly distributed to opposite poles at meiotic anaphase. Genomic in situ hybridization demonstrated that W19513 carried a pair of alien chromosomes from the M genome. Fluorescence in situ hybridization confirmed detection of variation in chromosomes 4A and 6B. Functional molecular marker analysis using expressed sequence tag–sequence-tagged site and PCR-based landmark unique gene primers revealed that the alien gene belonged to the third homologous group. The marker analysis confirmed that the alien chromosome pair was 3Mg. In addition, to further explore the molecular marker specificity of chromosome 3Mg, based on the specific locus amplified fragment sequencing technique, molecular markers specific for W19513 were developed with efficiencies of up to 47.66%. The W19513 line was inoculated with the physiological race E09 of powdery mildew (Blumeria graminis f. sp. tritici) at the seedling stage and showed moderate resistance. Field inoculation with a mixture of the races CYR31, CYR32, CYR33, and CYR34 of the stripe rust fungus (Puccinia striiformis f. sp. triticii) revealed that the line W19513 showed strong resistance.Conclusions: This study provides a foundation for use of the line W19513 in future genetic research and wheat improvement.


2021 ◽  
Vol 22 (15) ◽  
pp. 8157
Author(s):  
Manjit Singh ◽  
Marc C. Albertsen ◽  
A. Mark Cigan

Hybrid varieties can provide the boost needed to increase stagnant wheat yields through heterosis. The lack of an efficient hybridization system, which can lower the cost of goods of hybrid seed production, has been a major impediment to commercialization of hybrid wheat varieties. In this review, we discuss the progress made in characterization of nuclear genetic male sterility (NGMS) in wheat and its advantages over two widely referenced hybridization systems, i.e., chemical hybridizing agents (CHAs) and cytoplasmic male sterility (CMS). We have characterized four wheat genes, i.e., Ms1, Ms5, TaMs26 and TaMs45, that sporophytically contribute to male fertility and yield recessive male sterility when mutated. While Ms1 and Ms5 are Triticeae specific genes, analysis of TaMs26 and TaMs45 demonstrated conservation of function across plant species. The main features of each of these genes is discussed with respect to the functional contribution of three sub-genomes and requirements for complementation of their respective mutants. Three seed production systems based on three genes, MS1, TaMS26 and TaMS45, were developed and a proof of concept was demonstrated for each system. The Tams26 and ms1 mutants were maintained through a TDNA cassette in a Seed Production Technology-like system, whereas Tams45 male sterility was maintained through creation of a telosome addition line. These genes represent different options for hybridization systems utilizing NGMS in wheat, which can potentially be utilized for commercial-scale hybrid seed production.


Sign in / Sign up

Export Citation Format

Share Document