Order of magnitude of multiple Fourier coefficients of functions of bounded p-variation having lacunary Fourier series

2012 ◽  
Vol 78 (1-2) ◽  
pp. 97-109
Author(s):  
B. L. Ghodadra

2006 ◽  
Vol 13 (3) ◽  
pp. 581-584
Author(s):  
Rajendra G. Vyas

Abstract Let 𝑓 be a 2π-periodic function in 𝐿1[–π, π] and be its lacunary Fourier series with small gaps. We have estimated Fourier coefficients of 𝑓 if it is of φ∧ 𝐵𝑉 locally. We have also obtained a precise interconnection between the lacunarity in such series and the localness of the hypothesis to be satisfied by the generic function which allows us to the interpolate the results concerning lacunary series and non-lacunary series.



2009 ◽  
Vol 104 (1) ◽  
pp. 124
Author(s):  
Ferenc Móricz

We investigate the order of magnitude of the modulus of smoothness of a function $f$ with absolutely convergent Fourier series. We give sufficient conditions in terms of the Fourier coefficients in order that $f$ belongs to one of the generalized Zygmund classes $(\mathrm{Zyg}(\alpha, L)$ and $(\mathrm{Zyg} (\alpha, 1/L)$, where $0\le \alpha\le 2$ and $L= L(x)$ is a positive, nondecreasing, slowly varying function and such that $L(x) \to \infty$ as $x\to \infty$. A continuous periodic function $f$ with period $2\pi$ is said to belong to the class $(\mathrm{Zyg} (\alpha, L)$ if 26740 |f(x+h) - 2f(x) + f(x-h)| \le C h^\alpha L\left(\frac{1}{h}\right)\qquad \text{for all $x\in \mathsf T$ and $h>0$}, 26740 where the constant $C$ does not depend on $x$ and $h$; and the class $(\mathrm{Zyg} (\alpha, 1/L)$ is defined analogously. The above sufficient conditions are also necessary in case the Fourier coefficients of $f$ are all nonnegative.



Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 389
Author(s):  
Jeong-Gyoo Kim

Fourier series is a well-established subject and widely applied in various fields. However, there is much less work on double Fourier coefficients in relation to spaces of general double sequences. We understand the space of double Fourier coefficients as an abstract space of sequences and examine relationships to spaces of general double sequences: p-power summable sequences for p = 1, 2, and the Hilbert space of double sequences. Using uniform convergence in the sense of a Cesàro mean, we verify the inclusion relationships between the four spaces of double sequences; they are nested as proper subsets. The completions of two spaces of them are found to be identical and equal to the largest one. We prove that the two-parameter Wiener space is isomorphic to the space of Cesàro means associated with double Fourier coefficients. Furthermore, we establish that the Hilbert space of double sequence is an abstract Wiener space. We think that the relationships of sequence spaces verified at an intermediate stage in this paper will provide a basis for the structures of those spaces and expect to be developed further as in the spaces of single-indexed sequences.



2003 ◽  
Vol 10 (3) ◽  
pp. 401-410
Author(s):  
M. S. Agranovich ◽  
B. A. Amosov

Abstract We consider a general elliptic formally self-adjoint problem in a bounded domain with homogeneous boundary conditions under the assumption that the boundary and coefficients are infinitely smooth. The operator in 𝐿2(Ω) corresponding to this problem has an orthonormal basis {𝑢𝑙} of eigenfunctions, which are infinitely smooth in . However, the system {𝑢𝑙} is not a basis in Sobolev spaces 𝐻𝑡 (Ω) of high order. We note and discuss the following possibility: for an arbitrarily large 𝑡, for each function 𝑢 ∈ 𝐻𝑡 (Ω) one can explicitly construct a function 𝑢0 ∈ 𝐻𝑡 (Ω) such that the Fourier series of the difference 𝑢 – 𝑢0 in the functions 𝑢𝑙 converges to this difference in 𝐻𝑡 (Ω). Moreover, the function 𝑢(𝑥) is viewed as a solution of the corresponding nonhomogeneous elliptic problem and is not assumed to be known a priori; only the right-hand sides of the elliptic equation and the boundary conditions for 𝑢 are assumed to be given. These data are also sufficient for the computation of the Fourier coefficients of 𝑢 – 𝑢0. The function 𝑢0 is obtained by applying some linear operator to these right-hand sides.





2021 ◽  
Vol 19 (1) ◽  
pp. 1047-1055
Author(s):  
Zhihua Zhang

Abstract Fourier approximation plays a key role in qualitative theory of deterministic and random differential equations. In this paper, we will develop a new approximation tool. For an m m -order differentiable function f f on [ 0 , 1 0,1 ], we will construct an m m -degree algebraic polynomial P m {P}_{m} depending on values of f f and its derivatives at ends of [ 0 , 1 0,1 ] such that the Fourier coefficients of R m = f − P m {R}_{m}=f-{P}_{m} decay fast. Since the partial sum of Fourier series R m {R}_{m} is a trigonometric polynomial, we can reconstruct the function f f well by the combination of a polynomial and a trigonometric polynomial. Moreover, we will extend these results to the case of random processes.





Sign in / Sign up

Export Citation Format

Share Document