scholarly journals The Hilbert Space of Double Fourier Coefficients for an Abstract Wiener Space

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 389
Author(s):  
Jeong-Gyoo Kim

Fourier series is a well-established subject and widely applied in various fields. However, there is much less work on double Fourier coefficients in relation to spaces of general double sequences. We understand the space of double Fourier coefficients as an abstract space of sequences and examine relationships to spaces of general double sequences: p-power summable sequences for p = 1, 2, and the Hilbert space of double sequences. Using uniform convergence in the sense of a Cesàro mean, we verify the inclusion relationships between the four spaces of double sequences; they are nested as proper subsets. The completions of two spaces of them are found to be identical and equal to the largest one. We prove that the two-parameter Wiener space is isomorphic to the space of Cesàro means associated with double Fourier coefficients. Furthermore, we establish that the Hilbert space of double sequence is an abstract Wiener space. We think that the relationships of sequence spaces verified at an intermediate stage in this paper will provide a basis for the structures of those spaces and expect to be developed further as in the spaces of single-indexed sequences.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jeong-Gyoo Kim

The integrability of a function defined on the abstract Wiener space of double Fourier coefficients is explored. The abstract Wiener space is also a Hilbert space. We define an orthonormal system of the Hilbert space to establish a measure and integration on the abstract Wiener space. We examine the integrability of a function e α · 2 defined on the abstract Wiener space for Fernique theorem. With respect to the abstract Wiener measure, the integral of the function turns out to be convergent for α < 1 / 2 . The result provides a wider choice of the constant α than that of Fernique.


2014 ◽  
Vol 25 (13) ◽  
pp. 1450118 ◽  
Author(s):  
Seung Jun Chang ◽  
Jae Gil Choi

In this paper, we examine the analytic bilateral Laplace–Feynman transform (BLFT) for functions on the Hilbert space H. We then proceed to establish a relationship between the analytic BLFT on H and the analytic Fourier–Feynman transform on the abstract Wiener space B.


Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Medine Yeşilkayagil ◽  
Feyzi Başar

Let 0 < s < ?. In this study, we introduce the double sequence space Rqt(Ls) as the domain of four dimensional Riesz mean Rqt in the space Ls of absolutely s-summable double sequences. Furthermore, we show that Rqt(Ls) is a Banach space and a barrelled space for 1 ? s < 1 and is not a barrelled space for 0 < s < 1. We determine the ?- and ?(?)-duals of the space Ls for 0 < s ? 1 and ?(bp)-dual of the space Rqt(Ls) for 1 < s < 1, where ? ? {p, bp, r}. Finally, we characterize the classes (Ls:Mu), (Ls:Cbp), (Rqt(Ls) : Mu) and (Rqt(Ls):Cbp) of four dimensional matrices in the cases both 0 < s < 1 and 1 ? s < 1 together with corollaries some of them give the necessary and sufficient conditions on a four dimensional matrix in order to transform a Riesz double sequence space into another Riesz double sequence space.


2003 ◽  
Vol 10 (3) ◽  
pp. 401-410
Author(s):  
M. S. Agranovich ◽  
B. A. Amosov

Abstract We consider a general elliptic formally self-adjoint problem in a bounded domain with homogeneous boundary conditions under the assumption that the boundary and coefficients are infinitely smooth. The operator in 𝐿2(Ω) corresponding to this problem has an orthonormal basis {𝑢𝑙} of eigenfunctions, which are infinitely smooth in . However, the system {𝑢𝑙} is not a basis in Sobolev spaces 𝐻𝑡 (Ω) of high order. We note and discuss the following possibility: for an arbitrarily large 𝑡, for each function 𝑢 ∈ 𝐻𝑡 (Ω) one can explicitly construct a function 𝑢0 ∈ 𝐻𝑡 (Ω) such that the Fourier series of the difference 𝑢 – 𝑢0 in the functions 𝑢𝑙 converges to this difference in 𝐻𝑡 (Ω). Moreover, the function 𝑢(𝑥) is viewed as a solution of the corresponding nonhomogeneous elliptic problem and is not assumed to be known a priori; only the right-hand sides of the elliptic equation and the boundary conditions for 𝑢 are assumed to be given. These data are also sufficient for the computation of the Fourier coefficients of 𝑢 – 𝑢0. The function 𝑢0 is obtained by applying some linear operator to these right-hand sides.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nimet Pancaroǧlu Akın

AbstractIn this paper, we introduce the notions of regularly invariant convergence, regularly strongly invariant convergence, regularly p-strongly invariant convergence, regularly $(\mathcal{I}_{\sigma },\mathcal{I}^{\sigma }_{2})$ ( I σ , I 2 σ ) -convergence, regularly $(\mathcal{I}_{\sigma }^{*},\mathcal{I}^{\sigma *}_{2})$ ( I σ ∗ , I 2 σ ∗ ) -convergence, regularly $(\mathcal{I}_{\sigma },\mathcal{I}^{\sigma }_{2} )$ ( I σ , I 2 σ ) -Cauchy double sequence, regularly $(\mathcal{I}_{\sigma }^{*},\mathcal{I}^{\sigma *}_{2})$ ( I σ ∗ , I 2 σ ∗ ) -Cauchy double sequence and investigate the relationship among them.


1985 ◽  
Vol 1 (1) ◽  
pp. 7-26 ◽  
Author(s):  
A. R. Bergstrom

This paper is concerned with the estimation of a nonlinear regression function which is not assumed to belong to a prespecified parametric family of functions. An orthogonal series estimator is proposed, and Hilbert space methods are used in the derivation of its properties and the proof of several convergence theorems. One of the main objectives of the paper is to provide the theoretical basis for a practical stopping rule which can be used for determining the number of Fourier coefficients to be estimated from a given sample.


2021 ◽  
Vol 19 (1) ◽  
pp. 1047-1055
Author(s):  
Zhihua Zhang

Abstract Fourier approximation plays a key role in qualitative theory of deterministic and random differential equations. In this paper, we will develop a new approximation tool. For an m m -order differentiable function f f on [ 0 , 1 0,1 ], we will construct an m m -degree algebraic polynomial P m {P}_{m} depending on values of f f and its derivatives at ends of [ 0 , 1 0,1 ] such that the Fourier coefficients of R m = f − P m {R}_{m}=f-{P}_{m} decay fast. Since the partial sum of Fourier series R m {R}_{m} is a trigonometric polynomial, we can reconstruct the function f f well by the combination of a polynomial and a trigonometric polynomial. Moreover, we will extend these results to the case of random processes.


Sign in / Sign up

Export Citation Format

Share Document