Optimal maintenance and inspection : An impulsive control approach

Author(s):  
Maurice Robin
Author(s):  
Jahangir Chowdhury ◽  
Fahad Al Basir ◽  
Xianbing Cao ◽  
Priti Roy

In this research, an integrated pest management model using impulsive differential equations has been investigated for Jatropha curcas plantation to control its natural pests through relying on the release of infective pest individuals and spraying of chemical pesticides. Using Floquet’s theory and the small amplitude perturbation method, it is obtained that there exists an asymptotically stable susceptible pest eradication periodic solution when the release amount of infected pest is larger than the critical maximum value (or strength of chemical pesticide spraying is larger than some critical maximum value). Also, we have established the permanence of the system. After comparison, it is explored that integrated pest management is more effective than biological control or chemical control. Finally, verify the analytical results through numerical simulation.


2021 ◽  
Vol 18 (2) ◽  
pp. 1450-1464
Author(s):  
Amar Nath Chatterjee ◽  
◽  
Fahad Al Basir ◽  
Yasuhiro Takeuchi ◽  
◽  
...  

2021 ◽  
Vol 927 ◽  
Author(s):  
Aditya G. Nair ◽  
Kunihiko Taira ◽  
Bingni W. Brunton ◽  
Steven L. Brunton

Unsteady bluff-body flows exhibit dominant oscillatory behaviour owing to periodic vortex shedding. The ability to manipulate this vortex shedding is critical to improving the aerodynamic performance of bodies in a flow. This goal requires a precise understanding of how the perturbations affect the asymptotic behaviour of the oscillatory flow and of the ability to control transient dynamics. In this work, we develop an energy-efficient flow-control strategy to alter the oscillation phase of time-periodic fluid flows rapidly. First, we perform a phase-sensitivity analysis to construct a reduced-order model for the response of the flow oscillation to impulsive control inputs at various phases. Next, we introduce a real-time optimal phase-control strategy based on the phase-sensitivity function obtained by solving the associated Euler–Lagrange equations as a two-point boundary-value problem. Our approach is demonstrated for the incompressible laminar flow past a circular cylinder and an airfoil. We show the effectiveness of phase control with different actuation inputs, including blowing and rotary control. Moreover, our control approach is a sensor-based approach without the need for access to high-dimensional measurements of the entire flow field.


Sign in / Sign up

Export Citation Format

Share Document