pest management
Recently Published Documents


TOTAL DOCUMENTS

5419
(FIVE YEARS 1191)

H-INDEX

81
(FIVE YEARS 13)

2022 ◽  
Vol 177 ◽  
pp. 114533
Author(s):  
Rodrigo Iñaki Urrutia ◽  
Victoria Soledad Gutierrez ◽  
Natalia Stefanazzi ◽  
Maria Alicia Volpe ◽  
Jorge Omar Werdin González

2022 ◽  
Author(s):  
Surendra K. Dara ◽  

This chapter covers the definition of biostimulants, brief summary of various categories, and how they are used for promoting plant growth, building soil structure, imparting stress tolerance, and contribute to pest and disease suppression. Strategies for using biostimulants as a part of IPM and some challenges and future opportunities were also discussed.


2022 ◽  
Vol 12 (2) ◽  
pp. 783
Author(s):  
Giovanni Formato ◽  
Jorge Rivera-Gomis ◽  
Jernej Bubnic ◽  
Raquel Martín-Hernández ◽  
Marcella Milito ◽  
...  

Nosemosis is a serious microsporidian disease of adult European honey bees caused by the spore-forming unicellular fungi Nosema apis and Nosema ceranae. In this paper we describe the currently known techniques for nosemosis prevention and control including Good Beekeeping Practices (GBPs) and biosecurity measures (BMBs). Topics such as queen renewal, nosema-resistant bees and hygienic and control methods are described. Strong efforts are currently provided to find more a sustainable solution than the use of antibiotics. So far, it seems that the best way to approach nosemosis is given by an “integrated pest management strategy”, which foresees the contemporary application of different, specific GBPs and BMBs.


2022 ◽  
Author(s):  
Silas Shumate ◽  
Maggie Haylett ◽  
Brenda Nelson ◽  
Nicole Young ◽  
Kurt Lamour ◽  
...  

Tetranychus urticae (Koch) is an economically important pest of many agricultural commodities in the Pacific Northwest. Multiple miticides are currently registered for control including abamectin, bifenazate, bifenthrin, and extoxazole. However, populations of Tetranychus urticae have developed miticide resistance through multiple mechanisms, in many different growing regions. Producers of agricultural commodities where Tetranychus urticae infestations are problematic rely on integrated pest management tools to determine optimal control methods. Within this species multiple single nucleotide polymorphisms have been documented in different genes which are associated with miticide resistance phenotypes. The detection of these mutations through TaqMan qPCR has been suggested as a practical, quick, and reliable tool to inform agricultural producers of miticide resistance phenotypes present within their fields and have potential utility for making appropriate miticide application and integrated pest management decisions. Within this investigation we examined the use of a TaqMan qPCR-based approach to determine miticide resistance genotypes in field-collected populations of Tetranychus urticae from mint fields and hop yards in the Pacific Northwest of the United States and confirmed the results with a multiplex targeted sequencing. The results suggest the TaqMan approach accurately genotypes Tetranychus urticae populations collected from agricultural fields. The interpretation of the results, however, provide additional challenges for integrated pest management practitioners, including making miticide application recommendations where populations of Tetranychus urticae are a mix of resistant and wildtype individuals.


Author(s):  
Martha S. Hunter ◽  
Edwin F. Umanzor ◽  
Suzanne E. Kelly ◽  
Shaira Marie Whitaker ◽  
Alison Ravenscraft

Many beneficial symbioses between bacteria and their terrestrial arthropod hosts are vertically transmitted from mother to offspring, ensuring the progeny acquire necessary partners. Unusually, in several families of coreoid and lygeoid bugs (Hemiptera), nymphs must instead ingest the beneficial symbiont, Burkholderia ( sensu lato ), from the environment early in development. We studied the effects of Burkholderia on development of two species of leaf-footed bug (Coreidae) in the genus Leptoglossus, L. zonatus and L. phyllopus. We found no evidence for vertical transmission of the symbiont, but found stark differences in performance between symbiotic and aposymbiotic individuals. Symbiotic nymphs grew more rapidly, were approximately four times more likely to survive to adulthood than aposymbiotic bugs, and were two times larger. These findings suggest that Burkholderia is an obligate symbiont for Leptoglossus species. We also tested for variation in fitness effects conferred by four symbiont isolates representing different species within Burkholderia ’s insect-associated Stinkbug Beneficial and Environmental (SBE) clade. While three isolates conferred similar benefits to hosts, nymphs associated with the fourth isolate grew more slowly and weighed significantly less as adults. The effects of the four isolates were similar for both Leptoglossus species. This work indicates that both Burkholderia acquisition and isolate identity play critical roles in the growth and development of Leptoglossus. Importance Leptoglossus zonatus and L. phyllopus are important polyphagous pests and both species have been well-studied, but generally without regard to their dependance on a bacterial symbiont. Our results indicate that the central role of Burkholderia in the biology of these insects, as well as in other leaf-footed bugs, should be considered in future studies of coreid life history, ecology and pest management. Our work suggests acquisition of Burkholderia is critical for the growth and development of Leptoglossus species. Further, we found that there was variation in performance outcomes according to symbiont identity, even among members of the Stinkbug Beneficial and Environmental clade. This suggests that although environmental acquisition of a symbiont can provide extraordinary flexibility in partner associations, it also carries a risk if the partner is sub-optimal.


Sign in / Sign up

Export Citation Format

Share Document