Flat slender delta wings in supersonic stream at small angles of attack

Author(s):  
A. P. Bazzhin
1954 ◽  
Vol 5 (1) ◽  
pp. 55-72 ◽  
Author(s):  
G. N. Lance

SummaryA generalised conical field theory is developed and is applied to delta wings in a non-uniform stream. It is shown that a non-uniform stream may be characterised by the downwash at all points in space. The lift of a delta wing is found when the downwash in the wing plane is given as a power series in the co-ordinates in the wing plane. The basis of the conical field theory is described in some detail but the results only of the calculation of the lift distribution for various down washes are given. The solutions of certain integral equations, required in the calculations, are given in the Appendix.


AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 186-187
Author(s):  
S. Srigrarom ◽  
M. Kurosaka

AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 571-574
Author(s):  
H. Yang ◽  
I. Gursul
Keyword(s):  

1973 ◽  
Vol 24 (2) ◽  
pp. 120-128 ◽  
Author(s):  
J E Barsby

SummarySolutions to the problem of separated flow past slender delta wings for moderate values of a suitably defined incidence parameter have been calculated by Smith, using a vortex sheet model. By increasing the accuracy of the finite-difference technique, and by replacing Smith’s original nested iteration procedure, to solve the non-linear simultaneous equations that arise, by a Newton’s method, it is possible to extend the range of the incidence parameter over which solutions can be obtained. Furthermore for sufficiently small values of the incidence parameter, new and unexpected results in the form of vortex systems that originate inboard from the leading edge have been discovered. These new solutions are the only solutions, to the author’s knowledge, of a vortex sheet leaving a smooth surface.Interest has centred upon the shape of the finite vortex sheet, the position of the isolated vortex, and the lift, and variations of these quantities are shown as functions of the incidence parameter. Although no experimental evidence is available, comparisons are made with the simpler Brown and Michael model in which all the vorticity is assumed to be concentrated onto an isolated line vortex. Agreement between these two models becomes very close as the value of the incidence parameter is reduced.


1973 ◽  
Vol 40 (3) ◽  
pp. 667-671 ◽  
Author(s):  
J. M. Verdon

A method is presented for determining the unsteady flow field and the aerodynamic response which occurs when a finite oscillating cascade is placed in a supersonic stream, which has a subsonic velocity component normal to the cascade. Solutions are obtained through the combined use of closed-form and numerical procedures. Computed results indicate that the finite cascade analysis should provide a reasonable indication of the influence of the cascade parameters on the response of the infinite array. A brief parametric study for a typical configuration reveals possible aerodynamic instabilities when the blades perform single-degree-of-freedom pitching oscillations over a broad range of frequencies and interblade phase angles.


Sign in / Sign up

Export Citation Format

Share Document