Surface shaping to suppress vortex breakdown on delta wings

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 186-187
Author(s):  
S. Srigrarom ◽  
M. Kurosaka
AIAA Journal ◽  
10.2514/2.940 ◽  
2000 ◽  
Vol 38 (1) ◽  
pp. 186-187 ◽  
Author(s):  
S. Srigrarom ◽  
M. Kurosaka

AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 571-574
Author(s):  
H. Yang ◽  
I. Gursul
Keyword(s):  

1960 ◽  
Vol 64 (596) ◽  
pp. 491-493 ◽  
Author(s):  
B. J. Elle

In a recent article, H. Werlé, has described how the free spiral vortices on delta wings with leading edge separation suddenly expand if the incidence is increased beyond a critical value. His description conforms to a great extent with the results, arrived at during an English investigation of the same phenomenon (called the vortex breakdown), but the interpretations of the observations, suggested by the two sources, are different. Against this background it is felt that some further comments and some pertinent high speed observations, may be of interest.


AIAA Journal ◽  
1992 ◽  
Vol 30 (6) ◽  
pp. 1584-1586 ◽  
Author(s):  
Zvi Weinberg
Keyword(s):  

2007 ◽  
Vol 10 (3) ◽  
pp. 299-307 ◽  
Author(s):  
S. Srigrarom ◽  
N. Lewpiriyawong
Keyword(s):  

1999 ◽  
Vol 103 (1021) ◽  
pp. 139-142 ◽  
Author(s):  
L. W. Traub

AbstractAn incompressible method is presented to predict the upwash corrections associated with vortical flow as a result of wind-tunnel side wall effects. An image system is used to simulate the tunnel side walls which are assumed to be solid. An integral expression is formulated, representing the average upwash induced over the wing by the image system. Wall effects may be determined for flows with and without vortex breakdown. Comparisons of the results with upwash predictions from a Navier-Stokes study show close accord. The upwash expression also displayed the ability to successfully predict corrections for flows involving vortex breakdown.


2021 ◽  
pp. 1-25
Author(s):  
Rajan B. Kurade ◽  
L. Venkatakrishnan ◽  
G. Jagadeesh

Abstract Shock-induced vortex breakdown, which occurs on the delta wings at transonic speed, causes a sudden and significant change in the aerodynamic coefficients at a moderate angle-of-attack. Wind-tunnel tests show a sudden jump in the aerodynamic coefficients such as lift force, pitching moment and centre of pressure which affect the longitudinal stability and controllability of the vehicle. A pneumatic jet operated at sonic condition blown spanwise and along the vortex core over a 60° swept delta-wing-body configuration is found to be effective in postponing this phenomenon by energising the vortical structure, pushing the vortex breakdown location downstream. The study reports that a modest level of spanwise blowing enhances the lift by about 6 to 9% and lift-to-drag ratio by about 4 to 9%, depending on the free-stream transonic Mach number, and extends the usable angle-of-attack range by 2°. The blowing is found to reduce the magnitude of unsteady pressure fluctuations by 8% to 20% in the aft portion of the wing, depending upon the method of blowing. Detailed investigations carried out on the location of blowing reveal that the blowing close to the apex of the wing maximises the benefits.


Sign in / Sign up

Export Citation Format

Share Document