normal force
Recently Published Documents


TOTAL DOCUMENTS

840
(FIVE YEARS 145)

H-INDEX

38
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Yong Yang ◽  
Meirong Zhao ◽  
Dantong Li ◽  
Moran Tao ◽  
Chunyuan Zhu ◽  
...  

<div>The precision of micro-force measurement is determined by the sensitivity of force sensors and the magnitude of environmental disturbances. Damping, a process that converts vibrational energy into heat, is one of the most effective methods of suppressing disturbances. Inspired by the shadow formed at a pond when water striders walked on the water, a bionic viscoelastic-polymer micro-force (VPMF) sensor with a high damping ratio based on the shadow method was developed. In the VPMF sensor, the surface of the polymer was deformed by the contact of a cylindrical flat punch when the sensor was subjected to a normal force. A shadow with a bright edge was formed due to the refraction that parallel light went through the deformed surface. The force was in proportion to the change of the shadow diameter. The sensor optimal sensitivity was 2.15 μN/pixel and the measurement range was 0.981 mN. The damping ratio of the VPMF sensor was 0.22 on account of viscoelasticity, which could suppress disturbances effectively. The VPMF sensor could reduce the influence of disturbances by about 96.23% compared to the cantilever. The present study suggests that the VPMF sensor is hopefully applied to the reliable measurement of micro force under complex environments.</div>


2022 ◽  
Author(s):  
Yong Yang ◽  
Meirong Zhao ◽  
Dantong Li ◽  
Moran Tao ◽  
Chunyuan Zhu ◽  
...  

<div>The precision of micro-force measurement is determined by the sensitivity of force sensors and the magnitude of environmental disturbances. Damping, a process that converts vibrational energy into heat, is one of the most effective methods of suppressing disturbances. Inspired by the shadow formed at a pond when water striders walked on the water, a bionic viscoelastic-polymer micro-force (VPMF) sensor with a high damping ratio based on the shadow method was developed. In the VPMF sensor, the surface of the polymer was deformed by the contact of a cylindrical flat punch when the sensor was subjected to a normal force. A shadow with a bright edge was formed due to the refraction that parallel light went through the deformed surface. The force was in proportion to the change of the shadow diameter. The sensor optimal sensitivity was 2.15 μN/pixel and the measurement range was 0.981 mN. The damping ratio of the VPMF sensor was 0.22 on account of viscoelasticity, which could suppress disturbances effectively. The VPMF sensor could reduce the influence of disturbances by about 96.23% compared to the cantilever. The present study suggests that the VPMF sensor is hopefully applied to the reliable measurement of micro force under complex environments.</div>


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Syam Narayanan S. ◽  
Asad Ahmed R.

Purpose The purpose of this study is to experimentally analyse the effect of flexible and stiffened membrane wings in the lift generation of flapping micro air vehicle (MAV). Design/methodology/approach This is analysed by the rectangle wing made up of polyethylene terephthalate sheets of 100 microns. MAV is tested for the free stream velocity of 2 m/s, 4 m/s, 6 m/s and k* of 0, 0.25, 1, 3, 8. This test is repeated for flapping MAV of the free flapping frequency of 2 Hz, 4 Hz, 6 Hz, 10 Hz and 12 Hz. Findings This study shows that the membrane wing with proper stiffeners can give better lift generation capacity than a flexible wing. Research limitations/implications Only a normal force component is measured, which is perpendicular to the longitudinal axis of the model. Practical implications In MAVs, the wing structures are thin and light, so the effect of fluid-structure interactions is important at low Reynold’s numbers. This data are useful for the MAV developments. Originality/value The effect of chord-wise flexibility in lift generation is the study of the effect of a flexible wing and rigid wing in MAV. It is analysed by the rectangle wing. The coefficient of normal force at different free stream conditions was analysed.


Langmuir ◽  
2022 ◽  
Author(s):  
Zhe Chen ◽  
Yan Gu ◽  
Gongbo Wang ◽  
Qingrun Liu ◽  
Yujie Li ◽  
...  

Author(s):  
Matheus Fernandes ◽  
Silvana De Nardin ◽  
Fernando Menezes de Almeida Filho

abstract: In this paper, a computational code was developed to obtain M-N interaction curves for rectangular concrete-filled steel tube columns considering the strain compatibility in the cross-section. Considering the composite section subjected to uniaxial bending moments, expressions were developed to determine normal force, moment resistance, neutral axis depth and components resistance of cross-section. Such expressions were implemented in a computational tool developed to the authors and that allows to obtain the M-N pairs of strength. The steel and concrete ultimate strains were defined with the aid of the Brazilian standard for reinforced concrete structures ABNT NBR 6118. The obtained results were compared to simplified curves defined according to the theoretical models of ABNT NBR 8800, ABNT NBR 16239, EN 1994-1-1 and literature data. The proposed model showed good agreement with literature results and had good precision to estimate the ultimate moment values. To further understand the resistance of composite columns under uniaxial bending moments, parametric study was performed to evaluate the influence of the compressive strength of concrete, yielding strength of steel and steel area ratio on M-N interaction curves. The results indicate that the yielding strength of steel and the steel area ratio were the variables that most influenced the values of composite columns resistance (normal force and bending moment).


Author(s):  
Tianyang Han ◽  
Leon M Headings ◽  
Ryan Hahnlen ◽  
Marcelo J. Dapino

Abstract Ultrasonic additive manufacturing (UAM) is a solid state manufacturing process capable of producing near-net-shape metal parts. Recent studies have shown the promise of UAM welding of high strength steels. However, the effect of weld parameters on the weld quality of UAM steel is unclear. A design of experiments study based on a Taguchi L16 design array was conducted to investigate the influence of parameters including baseplate temperature, amplitude, welding speed, and normal force on the interfacial temperature and shear strength of UAM welding of carbon steel 4130. Analysis of variance (ANOVA) and main effects analyses were performed to determine optimal weld parameters within the process window. A Pearson correlation test was conducted to find the relationship between interfacial temperature and shear strength. These analyses indicate that the highest shear strength of 392.8 MPa can be achieved by using a baseplate temperature of 400°F (204.4°C), amplitude of 31.5 μm, welding speed of 40 in/min (16.93 mm/s), and normal force of 6000 N. The Pearson correlation coefficient is calculated as 0.227, which indicates a weak positive correlation between interfacial temperature and shear strength over the range tested.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fei Guo ◽  
Chengbin Du ◽  
Guojun Yu

In this paper, a novel magnetorheological elastomer (MRE) was prepared by dispersing carbonyl iron particles (CIPs) into a composite matrix compounded by butadiene rubber (BR) and self-fabricated Silly Putty. The rate-sensitive and magneto-induced characteristics of normal force were experimental investigated to discuss the working mechanism. The results demonstrated that the normal force increased with the compression rate and the mass fraction of boron-silicon copolymer added to the composite matrix due to the formation of the more and more B-O cross bonds which could be blocked in the C-C cross-linked network of BR. Meanwhile, the magneto-induced normal force was positively correlated with the applied magnetic field strength and the compression strain due to the decreased gap between the centers of soft magnetic particles and the increased particle intensity of magnetization. Moreover, the magneto-induced normal force continued to enhance with the increase of compression strain because the CIP chains fixed in the C-C cross-linked network could bend to a radian and CIP chains in B-O cross-linked network could rupture to form more stable and intensive short-chain structures. Besides, a simplified model was deduced to characterize the mechanism of the generation of the magneto-induced normal force. Furthermore, the normal force varied stably with the oscillatory shear strain (less than 9%) at different magnetic induction intensities and suddenly reduced when the applied oscillatory shear strain was more than 9%.


2021 ◽  
pp. 1-24
Author(s):  
Manuel Reichelt ◽  
Brunero Cappella

Abstract Wear phenomena at the nanoscale are essential for applications involving miniaturized specimens. Furthermore, stochastic nano-events affect in general tribological processes, eventually also at the macroscale. Hence, it is of fundamental importance to perform nanotests with materials – such as steel – which are widely used also at the macroscale. In this paper, we present the analysis of tribotests performed with self-mated 100Cr6 steel (AISI 52100) at the submicron scale by means of an atomic force microscope. To this aim, steel particles with micrometre size were glued to the cantilever as “colloidal particles”. The microscope was employed for wear generation, for the imaging of scars and colloidal particles, and for the determination of wear volumes of both specimens. The analysis is focused on wear volume and its dependence on normal force and total sliding distance. Nanotests are compared with previously presented macrotests, also performed with self-mated steel. Nanotests exhibit, compared with macrotests, a significantly larger scattering and poor repeatability. Especially the analysis of these features reveals that, with small forces (≤ 10 µN) and surfaces (≤ 2 µm2), the random number of asperities inside the contact surface plays a crucial role, by far more decisive than the normal force or the sliding distance. Moreover, in several cases, only few asperities (&lt; 10) are involved in the wear process. Such low numbers lead to a breakdown in the applicability of tribological laws (e.g. Archard's law) based on statistical methods and on average variables.


2021 ◽  
Vol 21 (3) ◽  
pp. 239-246
Author(s):  
A. V. Galaburdin

Introduction. A method for solving the problem on the action of a normal force moving on an infinite plate according to an arbitrary law is considered. This method and the results obtained can be used to study the effect of a moving load on various structures.Materials and Methods. An original method for solving problems of the action of a normal force moving arbitrarily along a freeform open curve on an infinite plate resting on an elastic base, is developed. For this purpose, a fundamental solution to the differential equation of the dynamics of a plate resting on an elastic base is used. It is assumed that the movement of force begins at a sufficiently distant moment in time. Therefore, there are no initial conditions in this formulation of the problem. When determining the fundamental solution, the Fourier transform is performed in time. When the Fourier transform is inverted, the image is expanded in terms of the transformation parameter into a series in Hermite polynomials.Results. The solution to the problem on an infinite plate resting on an elastic base, along which a concentrated force moves at a variable speed, is presented. A smooth open curve, consisting of straight lines and arcs of circles, was considered as a trajectory. The behavior of the components of the displacement vector and the stress tensor at the location of the moving force is studied, as well as the process of wave energy propagation, for which the change in the Umov-Poynting energy flux density vector is considered. The effect of the speed and acceleration of the force movement on the displacements, stresses and propagation of elastic waves is investigated. The influence of the force trajectory shape on the stress-strain state of the plate and on the nature of the propagation of elastic waves is studied. The results indicate that the method is quite stable within a wide range of changes in the speed of force movement.Discussion and Conclusions. The calculations have shown that the most significant factor affecting the stress-strain states of the plate and the propagation of elastic wave energy near the concentrated force is the speed of its movement. These results will be useful under studying dynamic processes generated by a moving load.


Sign in / Sign up

Export Citation Format

Share Document