flow field characteristics
Recently Published Documents


TOTAL DOCUMENTS

411
(FIVE YEARS 144)

H-INDEX

16
(FIVE YEARS 5)

Author(s):  
Wenjin Qin ◽  
Dengbiao Lu ◽  
Lihui Xu

Abstract In this research, n-dodecane and JW are selected as single and multi-component surrogate fuel of aviation kerosene to study the Jet-A spray combustion characteristics. The spray combustion phenomena are simulated using large eddy simulation coupled with detailed chemical reaction mechanism. Proper orthogonal decomposition method is applied to analyze the flow field characteristics, and the instantaneous velocity field are decomposed into four parts, namely the mean field, coherent field, transition field and turbulent field, respectively. The four subfields have their own characteristics. In terms of different fuels, JW has a higher intensity of coherent structures and local vortices than n-dodecane, which promotes the fuel-air mixing and improves the combustion characteristics, and the soot formation is significantly reduced. In addition, with the increase of initial temperature, the combustion is more intense, the ignition delay time is advanced, the flame lift-off length is reduced, and soot formation is increased accordingly.


2022 ◽  
Vol 355 ◽  
pp. 03070
Author(s):  
Yuntang Li ◽  
Yueliang Ye ◽  
Ruirui Li ◽  
Pengfeng Wang ◽  
Fangfang Zhang

Aerostatic thrust bearing compensated by multi-orifices and porous material restrictor simultaneously is proposed to improve the static performance of the bearing. Load Carrying Capacity (LCC), stiffness and the flow field characteristics of the bearing are obtained by Computational Fluid Dynamic (CFD) simulation. The influences of supply pressure, orifice number, orifice diameter, orifice distribution, porous material thickness and permeability coefficient on the bearing performance are analysed. It is indicated that LCC and stiffness of the bearing with compound restrictors are much higher than those of the bearing with porous material restrictor or multi-orifice restrictor if gas film thickness is in rational range. The bearing with compound restrictors has better stability than that of the bearing with multi-orifice restrictor. Moreover, the optimum bearing parameters with compound restrictors are given to improving the performance of aerostatic thrust bearing.


2021 ◽  
Author(s):  
Peikun Liu ◽  
Zeling Diao ◽  
Lanyue Jiang ◽  
Peili Liu ◽  
Xing Huo ◽  
...  

2021 ◽  
Vol 33 (12) ◽  
pp. 126112
Author(s):  
Kevin Wu ◽  
Shu-jie Zhang ◽  
Da-wen She ◽  
Jian-ping Wang

2021 ◽  
Author(s):  
Feng Wang ◽  
Yafeng He ◽  
Xiaokai Wu ◽  
Min Kang

Abstract Electrochemical grinding (ECG) is processed by the combination of dissolution and grinding. It is very suitable for the processing of difficult-to-cut stainless steel, but its processing performance is restricted by the matching effect of dissolution and grinding. In this work, the processing of the torus surfaces of the stainless steel shaver cap was taken as the research object. A flow field model including the through-hole structure and the rotation of the grinding head was proposed to optimize the flow field distribution and promote the uniform dissolution of materials. The flow field simulation results showed that the rotational flow formed by the high-speed rotation prolonged the electrolyte flow path and was not conducive to the discharge of electrolytic products, and the reasonable selection of the diameter and distribution of the through-hole could reduce the velocity difference. The effects of rotational speed, feed rate, and inlet pressure on the flatness and surface roughness of the torus surfaces were experimentally investigated, and a better matching effect of dissolution and grinding was obtained. Moreover, the experimental results showed that the inner-jet ECG had a good prospect in the batch processing of high-hardness stainless steel parts.


Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 339
Author(s):  
Georgios Paterakis ◽  
Konstantinos Souflas ◽  
Andreas Naxakis ◽  
Panayiotis Koutmos

This work investigates the non-reacting time averaged and fluctuating flow field characteristics downstream of a variety of axisymmetric baffles, operating in combination with an upstream double-cavity premixer arrangement. The study aims to broaden knowledge with respect to the impact of different bluff body shapes, leading and trailing edge flow contours, blockage ratios and incoming flow profiles impinging on the bluff body, on the development and properties of the downstream recirculating wake. Particle Image Velocimetry (PIV) measurements have been employed to obtain the mean and turbulent velocity fields throughout the centrally located recirculation zone and the adjacent developing toroidal shear layer. The results are helpful in demarcating the cold flow structure variations in the near wake of the examined baffles which support and, to some extent, determine the flame anchoring performance and heat release disposition in counterpart reacting configurations. Additionally, such results could also assist in the selection of the most suitable flame stabilization configuration for fuels possessing challenging combustion behavior such as multi-component heavier hydrocarbons, biofuels, or hydrogen blends.


Sign in / Sign up

Export Citation Format

Share Document