Neighborhood/conceptual query answering with imprecise/incomplete data

Author(s):  
Show-Jane Yen ◽  
Arbee L. P. Chen
Semantic Web ◽  
2020 ◽  
pp. 1-25
Author(s):  
Enrique Matos Alfonso ◽  
Alexandros Chortaras ◽  
Giorgos Stamou

In this paper, we study the problem of query rewriting for disjunctive existential rules. Query rewriting is a well-known approach for query answering on knowledge bases with incomplete data. We propose a rewriting technique that uses negative constraints and conjunctive queries to remove the disjunctive components of disjunctive existential rules. This process eventually generates new non-disjunctive rules, i.e., existential rules. The generated rules can then be used to produce new rewritings using existing rewriting approaches for existential rules. With the proposed technique we are able to provide complete UCQ-rewritings for union of conjunctive queries with universally quantified negation. We implemented the proposed algorithm in the Completo system and performed experiments that evaluate the viability of the proposed solution.


Author(s):  
Amélie Gheerbrant ◽  
Cristina Sirangelo

Answering queries over incomplete data is ubiquitous in data management and in many AI applications that use query rewriting to take advantage of relational database technology. In these scenarios one lacks full information on the data but queries still need to be answered with certainty. The certainty aspect often makes query answering unfeasible except for restricted classes, such as unions of conjunctive queries. In addition often there are no, or very few certain answers, thus expensive computation is in vain. Therefore we study a relaxation of certain answers called best answers. They are defined as those answers for which there is no better one (that is, no answer true in more possible worlds). When certain answers exist the two notions coincide. We compare different ways of casting query answering as a decision problem and characterise its complexity for first-order queries, showing significant differences in the behavior of best and certain answers.We then restrict attention to best answers for unions of conjunctive queries and produce a practical algorithm for finding them based on query rewriting techniques.


2010 ◽  
Vol 10 (3) ◽  
pp. 291-329 ◽  
Author(s):  
ANDREA CALÌ ◽  
DAVIDE MARTINENGHI

AbstractSince Chen's Entity-Relationship (ER) model, conceptual modeling has been playing a fundamental role in relational data design. In this paper we consider an extended ER (EER) model enriched with cardinality constraints, disjointness assertions, and is a relations among both entities and relationships. In this setting, we consider the case of incomplete data, which is likely to occur, for instance, when data from different sources are integrated. In such a context, we address the problem of providing correct answers to conjunctive queries by reasoning on the schema. Based on previous results about decidability of the problem, we provide a query answering algorithm that performs rewriting of the initial query into a recursive Datalog query encoding the information about the schema. We finally show extensions to more general settings.


Author(s):  
Markus Krötzsch

To reason with existential rules (a.k.a. tuple-generating dependencies), one often computes universal models. Among the many such models of different structure and cardinality, the core is arguably the “best”. Especially for finitely satisfiable theories, where the core is the unique smallest universal model, it has advantages in query answering, non-monotonic reasoning, and data exchange. Unfortunately, computing cores is difficult and not supported by most reasoners. We therefore propose ways of computing cores using practically implemented methods from rule reasoning and answer set programming. Our focus is on cases where the standard chase algorithm produces a core. We characterise this desirable situation in general terms that apply to a large class of cores, derive concrete approaches for decidable special cases, and generalise these approaches to non-monotonic extensions of existential rules.


Sign in / Sign up

Export Citation Format

Share Document