query answering
Recently Published Documents


TOTAL DOCUMENTS

711
(FIVE YEARS 116)

H-INDEX

37
(FIVE YEARS 4)

Author(s):  
GABRIELLA PASI ◽  
RAFAEL PEÑALOZA

Abstract A prominent problem in knowledge representation is how to answer queries taking into account also the implicit consequences of an ontology representing domain knowledge. While this problem has been widely studied within the realm of description logic ontologies, it has been surprisingly neglected within the context of vague or imprecise knowledge, particularly from the point of view of mathematical fuzzy logic. In this paper, we study the problem of answering conjunctive queries and threshold queries w.r.t. ontologies in fuzzy DL-Lite. Specifically, we show through a rewriting approach that threshold query answering w.r.t. consistent ontologies remains in ${AC}^{0}$ in data complexity, but that conjunctive query answering is highly dependent on the selected triangular norm, which has an impact on the underlying semantics. For the idempotent Gödel t-norm, we provide an effective method based on a reduction to the classical case.


Author(s):  
Jing Ao ◽  
Swathi Dinakaran ◽  
Hongjian Yang ◽  
David Wright ◽  
Rada Chirkova

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Swapna Johnny ◽  
S. Jaya Nirmala
Keyword(s):  

2021 ◽  
Author(s):  
Camille Bourgaux ◽  
David Carral ◽  
Markus Krötzsch ◽  
Sebastian Rudolph ◽  
Michaël Thomazo

Existential rules are a very popular ontology-mediated query language for which the chase represents a generic computational approach for query answering. It is straightforward that existential rule queries exhibiting chase termination are decidable and can only recognize properties that are preserved under homomorphisms. In this paper, we show the converse: every decidable query that is closed under homomorphism can be expressed by an existential rule set for which the standard chase universally terminates. Membership in this fragment is not decidable, but we show via a diagonalisation argument that this is unavoidable.


2021 ◽  
Author(s):  
Michael Morak

Stickiness is one of the well-known properties in the literature that guarantees decidability of query answering under sets of existential rules, that is, Datalog rules extended with existential quantification in rule heads. In this note, we investigate whether this remains true in the case when rule heads are allowed to be disjunctive. We answer this question in the negative, providing a strong undecidability result that shows that the concept of stickiness cannot be extended to disjunctive existential rules, even when considering only fixed atomic queries and a fixed set of rules. This provides evidence that, in order to keep query answering decidable, a stronger property than stickiness is needed in the disjunctive case.


Author(s):  
Piero A. Bonatti

AbstractThis paper partially bridges a gap in the literature on Circumscription in Description Logics by investigating the tractability of conjunctive query answering in OWL2’s profiles. It turns out that the data complexity of conjunctive query answering is coNP-hard in circumscribed $\mathcal {E}{\mathscr{L}}$ E L and DL-lite, while in circumscribed OWL2-RL conjunctive queries retain their classical semantics. In an attempt to capture nonclassical inferences in OWL2-RL, we consider conjunctive queries with safe negation. They can detect some of the nonclassical consequences of circumscribed knowledge bases, but data complexity becomes coNP-hard. In circumscribed $\mathcal {E}{\mathscr{L}}$ E L , answering queries with safe negation is undecidable.


Author(s):  
STEFAN BORGWARDT ◽  
WALTER FORKEL ◽  
ALISA KOVTUNOVA

Abstract Ontology-mediated query answering is a popular paradigm for enriching answers to user queries with background knowledge. For querying the absence of information, however, there exist only few ontology-based approaches. Moreover, these proposals conflate the closed-domain and closed-world assumption and, therefore, are not suited to deal with the anonymous objects that are common in ontological reasoning. Many real-world applications, like processing electronic health records, also contain a temporal dimension and require efficient reasoning algorithms. Moreover, since medical data are not recorded on a regular basis, reasoners must deal with sparse data with potentially large temporal gaps. Our contribution consists of two main parts: In the first part, we introduce a new closed-world semantics for answering conjunctive queries (CQs) with negation over ontologies formulated in the description logic $${\mathcal E}{\mathcal L}{{\mathcal H}_ \bot }$$ , which is based on the minimal canonical model. We propose a rewriting strategy for dealing with negated query atoms, which shows that query answering is possible in polynomial time in data complexity. In the second part, we extend this minimal-world semantics for answering metric temporal CQs with negation over the lightweight temporal logic and obtain similar rewritability and complexity results.


Author(s):  
Meghyn Bienvenu ◽  
Quentin Manière ◽  
Michaël Thomazo

Ontology-mediated query answering (OMQA) employs structured knowledge and automated reasoning in order to facilitate access to incomplete and possibly heterogeneous data. While most research on OMQA adopts (unions of) conjunctive queries as the query language, there has been recent interest in handling queries that involve counting. In this paper, we advance this line of research by investigating cardinality queries (which correspond to Boolean atomic counting queries) coupled with DL-Lite ontologies. Despite its apparent simplicity, we show that such an OMQA setting gives rise to rich and complex behaviour. While we prove that cardinality query answering is tractable (TC0) in data complexity when the ontology is formulated in DL-Lite-core, the problem becomes coNP-hard as soon as role inclusions are allowed. For DL-Lite-pos-H (which allows only positive axioms), we establish a P-coNP dichotomy and pinpoint the TC0 cases; for DL-Lite-core-H (allowing also negative axioms), we identify new sources of coNP complexity and also exhibit L-complete cases. Interestingly, and in contrast to related tractability results, we observe that the canonical model may not give the optimal count value in the tractable cases, which led us to develop an entirely new approach based upon exploring a space of strategies to determine the minimum possible number of query matches.


Sign in / Sign up

Export Citation Format

Share Document