A temporal logic approach to specify and to prove properties of finite state concurrent systems

Author(s):  
M. Danelutto ◽  
A. Masini
2017 ◽  
Vol 2017 ◽  
pp. 1-33 ◽  
Author(s):  
Weijun Zhu ◽  
Changwei Feng ◽  
Huanmei Wu

As an important complex problem, the temporal logic model checking problem is still far from being fully resolved under the circumstance of DNA computing, especially Computation Tree Logic (CTL), Interval Temporal Logic (ITL), and Projection Temporal Logic (PTL), because there is still a lack of approaches for DNA model checking. To address this challenge, a model checking method is proposed for checking the basic formulas in the above three temporal logic types with DNA molecules. First, one-type single-stranded DNA molecules are employed to encode the Finite State Automaton (FSA) model of the given basic formula so that a sticker automaton is obtained. On the other hand, other single-stranded DNA molecules are employed to encode the given system model so that the input strings of the sticker automaton are obtained. Next, a series of biochemical reactions are conducted between the above two types of single-stranded DNA molecules. It can then be decided whether the system satisfies the formula or not. As a result, we have developed a DNA-based approach for checking all the basic formulas of CTL, ITL, and PTL. The simulated results demonstrate the effectiveness of the new method.


1992 ◽  
Vol 03 (03) ◽  
pp. 233-244 ◽  
Author(s):  
A. SAOUDI ◽  
D.E. MULLER ◽  
P.E. SCHUPP

We introduce four classes of Z-regular grammars for generating bi-infinite words (i.e. Z-words) and prove that they generate exactly Z-regular languages. We extend the second order monadic theory of one successor to the set of the integers (i.e. Z) and give some characterizations of this theory in terms of Z-regular grammars and Z-regular languages. We prove that this theory is decidable and equivalent to the weak theory. We also extend the linear temporal logic to Z-temporal logic and then prove that each Z-temporal formula is equivalent to a first order monadic formula. We prove that the correctness problem for finite state processes is decidable.


1989 ◽  
Vol 9 (4) ◽  
pp. 253-272
Author(s):  
Gregory B. Titus ◽  
Allan M. Stavely

Sign in / Sign up

Export Citation Format

Share Document