dna molecules
Recently Published Documents


TOTAL DOCUMENTS

2381
(FIVE YEARS 208)

H-INDEX

119
(FIVE YEARS 9)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Fan Ye ◽  
James T. Inman ◽  
Yifeng Hong ◽  
Porter M. Hall ◽  
Michelle D. Wang

AbstractNanophotonic tweezers represent emerging platforms with significant potential for parallel manipulation and measurements of single biological molecules on-chip. However, trapping force generation represents a substantial obstacle for their broader utility. Here, we present a resonator nanophotonic standing-wave array trap (resonator-nSWAT) that demonstrates significant force enhancement. This platform integrates a critically-coupled resonator design to the nSWAT and incorporates a novel trap reset scheme. The nSWAT can now perform standard single-molecule experiments, including stretching DNA molecules to measure their force-extension relations, unzipping DNA molecules, and disrupting and mapping protein-DNA interactions. These experiments have realized trapping forces on the order of 20 pN while demonstrating base-pair resolution with measurements performed on multiple molecules in parallel. Thus, the resonator-nSWAT platform now meets the benchmarks of a table-top precision optical trapping instrument in terms of force generation and resolution. This represents the first demonstration of a nanophotonic platform for such single-molecule experiments.


2021 ◽  
Author(s):  
Stephanie L Battle ◽  
Daniela Puiu ◽  
Eric Boerwinkle ◽  
Kent Taylor ◽  
Jerome Rotter ◽  
...  

Mitochondrial diseases are a heterogeneous group of disorders that can be caused by mutations in the nuclear or mitochondrial genome. Mitochondrial DNA variants may exist in a state of heteroplasmy, where a percentage of DNA molecules harbor a variant, or homoplasmy, where all DNA molecules have a variant. The relative quantity of mtDNA in a cell, or copy number (mtDNA-CN), is associated with mitochondrial function, human disease, and mortality. To facilitate accurate identification of heteroplasmy and quantify mtDNA-CN, we built a bioinformatics pipeline that takes whole genome sequencing data and outputs mitochondrial variants, and mtDNA-CN. We incorporate variant annotations to facilitate determination of variant significance. Our pipeline yields uniform coverage by remapping to a circularized chrM and recovering reads falsely mapped to nuclear-encoded mitochondrial sequences. Notably, we construct a consensus chrM sequence for each sample and recall heteroplasmy against the sample's unique mitochondrial genome. We observe an approximately 3-fold increased association with age for heteroplasmic variants in non-homopolymer regions and, are better able to capture genetic variation in the D-loop of chrM compared to existing software. Our bioinformatics pipeline more accurately captures features of mitochondrial genetics than existing pipelines that are important in understanding how mitochondrial dysfunction contributes to disease.


2021 ◽  
Author(s):  
Teodor Kirilov ◽  
Anastas Gospodinov ◽  
Kiril Kirilov

The duplication of genetic information (DNA replication) is central to life. Numerous control mechanisms ensure the exact course of the process during each cell division. Disturbances of DNA replication have severe consequences for the affected cell, and current models link them to cancer development. One of the most accurate methods for studying DNA replication is labeling newly synthesized DNA molecules with halogenated nucleotides, followed by immunofluorescence and microscopy detection, known as DNA fiber labeling. The method allows the registration of the activity of single replication complexes by measuring the length of the "trace" left by each of them. The major difficulty of the method is the labor-intensive analysis, which requires measuring the lengths of a large number of labeled fragments. Recently, the interest in this kind of image analysis has grown rapidly. In this manuscript, we provide a detailed description of an algorithm and a lightweight Java application to automatically analyze single DNA molecule images we call "DNA size finder". DNA size finder significantly simplified the analysis of the experimental data while increasing reliability by the standardized measurement of a greater number of DNA molecules. It is freely available and does not require any paid platforms or services to be used. We hope that the application will facilitate both the study of DNA replication control and the effects of various compounds used in human activity on the process of DNA replication.


2021 ◽  
Vol 118 (50) ◽  
pp. e2114937118
Author(s):  
Stephanie C. Y. Yu ◽  
Peiyong Jiang ◽  
Wenlei Peng ◽  
Suk Hang Cheng ◽  
Y. T. Tommy Cheung ◽  
...  

In the field of circulating cell-free DNA, most of the studies have focused on short DNA molecules (e.g., <500 bp). The existence of long cell-free DNA molecules has been poorly explored. In this study, we demonstrated that single-molecule real-time sequencing allowed us to detect and analyze a substantial proportion of long DNA molecules from both fetal and maternal sources in maternal plasma. Such molecules were beyond the size detection limits of short-read sequencing technologies. The proportions of long cell-free DNA molecules in maternal plasma over 500 bp were 15.5%, 19.8%, and 32.3% for the first, second, and third trimesters, respectively. The longest fetal-derived plasma DNA molecule observed was 23,635 bp. Long plasma DNA molecules demonstrated predominance of A or G 5′ fragment ends. Pregnancies with preeclampsia demonstrated a reduction in long maternal plasma DNA molecules, reduced frequencies for selected 5′ 4-mer end motifs ending with G or A, and increased frequencies for selected motifs ending with T or C. Finally, we have developed an approach that employs the analysis of methylation patterns of the series of CpG sites on a long DNA molecule for determining its tissue origin. This approach achieved an area under the curve of 0.88 in differentiating between fetal and maternal plasma DNA molecules, enabling the determination of maternal inheritance and recombination events in the fetal genome. This work opens up potential clinical utilities of long cell-free DNA analysis in maternal plasma including noninvasive prenatal testing of monogenic diseases and detection/monitoring of pregnancy-associated disorders such as preeclampsia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mayu Shono ◽  
Ritsuki Ito ◽  
Fumika Fujita ◽  
Hiroki Sakuta ◽  
Kenichi Yoshikawa

AbstractLiving cells maintain their lives through self-organization in an environment crowded with a rich variety of biological species. Recently, it was found that micro-droplets containing biomacromolecules, which vary widely in size, are generated accompanied by water/water phase-separation by simple mechanical mixing of an aqueous solution with binary polymers. Here, we report that cell-sized droplets of nearly the same size are generated as a linear array within a glass capillary upon the introduction of a binary polymer solution of polyethylene glycol (PEG) and dextran (DEX). Interestingly, when DNA molecules are added to the polymer solution, stable droplets entrapping DNA molecules are obtained. Similarly, living cells are entrapped spontaneously for the linearly-arranged cell-sized droplets. This simple method for generating micro-droplets entrapping DNA and also living cells is expected to stimulate further study on the self-construction of protocells and micro organoids.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Masachika Ikegami ◽  
Shinji Kohsaka ◽  
Takeshi Hirose ◽  
Toshihide Ueno ◽  
Satoshi Inoue ◽  
...  

AbstractThe clinical sequencing of tumors is usually performed on formalin-fixed, paraffin-embedded samples and results in many sequencing errors. We identified that most of these errors are detected in chimeric reads caused by single-strand DNA molecules with microhomology. During the end-repair step of library preparation, mutations are introduced by the mis-annealing of two single-strand DNA molecules comprising homologous sequences. The mutated bases are distributed unevenly near the ends in the individual reads. Our filtering pipeline, MicroSEC, focuses on the uneven distribution of mutations in each read and removes the sequencing errors in formalin-fixed, paraffin-embedded samples without over-eliminating the mutations detected also in fresh frozen samples. Amplicon-based sequencing using 97 mutations confirmed that the sensitivity and specificity of MicroSEC were 97% (95% confidence interval: 82–100%) and 96% (95% confidence interval: 88–99%), respectively. Our pipeline will increase the reliability of the clinical sequencing and advance the cancer research using formalin-fixed, paraffin-embedded samples.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260489
Author(s):  
Erik Torstensson ◽  
Gaurav Goyal ◽  
Anna Johnning ◽  
Fredrik Westerlund ◽  
Tobias Ambjörnsson

Optical DNA mapping (ODM) is based on fluorescent labeling, stretching and imaging of single DNA molecules to obtain sequence-specific fluorescence profiles, DNA barcodes. These barcodes can be mapped to theoretical counterparts obtained from DNA reference sequences, which in turn allow for DNA identification in complex samples and for detecting structural changes in individual DNA molecules. There are several types of DNA labeling schemes for ODM and for each labeling type one or several types of match scoring methods are used. By combining the information from multiple labeling schemes one can potentially improve mapping confidence; however, combining match scores from different labeling assays has not been implemented yet. In this study, we introduce two theoretical methods for dealing with analysis of DNA molecules with multiple label types. In our first method, we convert the alignment scores, given as output from the different assays, into p-values using carefully crafted null models. We then combine the p-values for different label types using standard methods to obtain a combined match score and an associated combined p-value. In the second method, we use a block bootstrap approach to check for the uniqueness of a match to a database for all barcodes matching with a combined p-value below a predefined threshold. For obtaining experimental dual-labeled DNA barcodes, we introduce a novel assay where we cut plasmid DNA molecules from bacteria with restriction enzymes and the cut sites serve as sequence-specific markers, which together with barcodes obtained using the established competitive binding labeling method, form a dual-labeled barcode. All experimental data in this study originates from this assay, but we point out that our theoretical framework can be used to combine data from all kinds of available optical DNA mapping assays. We test our multiple labeling frameworks on barcodes from two different plasmids and synthetically generated barcodes (combined competitive-binding- and nick-labeling). It is demonstrated that by simultaneously using the information from all label types, we can substantially increase the significance when we match experimental barcodes to a database consisting of theoretical barcodes for all sequenced plasmids.


2021 ◽  
Author(s):  
Christy Cho ◽  
Henrike Niederholtmeyer ◽  
Hyeonglim Seo ◽  
Ahanjit Bhattacharya ◽  
Neal K. Devaraj

Nucleic acids are among the most versatile molecules for the construction of biomimetic systems because they can serve as information carriers and programmable construction materials. How nucleic acids interact with membranous coacervate compartments such as lipid sponge droplets is not known. Here we systematically characterize the potential of DNA to functionalize lipid sponge droplets and demonstrate a strong size dependence for sequestration into the sponge phase. Double stranded DNA molecules of more than 300 bp are excluded and form a corona on the surface of droplets they are targeted to. Shorter DNA molecules partition efficiently into the lipid sponge phase and can direct DNA-templated reactions to droplets. We demonstrate repeated capture and release of labeled DNA strands by dynamic hybridization and strand displacement reactions that occur inside droplets. Our system opens new opportunities for DNA-encoded functions in lipid sponge droplets such as cargo control and signaling.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260428
Author(s):  
Maurizio Righini ◽  
Justin Costa ◽  
Wei Zhou

DNA molecular combing is a technique that stretches thousands of long individual DNA molecules (up to 10 Mbp) into a parallel configuration on surface. It has previously been proposed to sequence these molecules by synthesis. However, this approach poses two critical challenges: 1-Combed DNA molecules are overstretched and therefore a nonoptimal substrate for polymerase extension. 2-The combing surface sterically impedes full enzymatic access to the DNA backbone. Here, we introduce a novel approach that attaches thousands of molecules to a removable surface, with a tunable stretching factor. Next, we dissolve portions of the surface, leaving the DNA molecules suspended as ‘bridges’. We demonstrate that the suspended molecules are enzymatically accessible, and we have used an enzyme to incorporate labeled nucleotides, as predicted by the specific molecular sequence. Our results suggest that this novel platform is a promising candidate to achieve high-throughput sequencing of Mbp-long molecules, which could have additional genomic applications, such as the study of other protein-DNA interactions.


2021 ◽  
Author(s):  
Dmitry N. Makarov ◽  
Anastasia A. Kharlamova

Sign in / Sign up

Export Citation Format

Share Document