A generalization of little's law to moments of queue lengths and waiting times in closed, product form queueing networks

Author(s):  
James McKenna
1989 ◽  
Vol 26 (01) ◽  
pp. 121-133 ◽  
Author(s):  
James McKenna

Little's theorem states that under very general conditions L = λW, where L is the time average number in the system, W is the expected sojourn time in the system, and λ is the mean arrival rate to the system. For certain systems it is known that relations of the form E((L) l ) = λ lE((W) l ) are also true, where (L) l = L(L – 1)· ·· (L – l + 1). It is shown in this paper that closely analogous relations hold in closed, product-form queueing networks. Similar expressions relate Nji and Sji, where Nji is the total number of class j jobs at center i and Sji is the total sojourn time of a class j job at center i, when center i is a single-server, FCFS center. When center i is a c-server, FCFS center, Qji and Wji are related this way, where Qji is the number of class j jobs queued, but not in service at center i and Wji is the waiting time in queue of a class j job at center i. More remarkably, generalizations of these results to joint moments of queue lengths and sojourn times along overtake-free paths are shown to hold.


1989 ◽  
Vol 26 (1) ◽  
pp. 121-133 ◽  
Author(s):  
James McKenna

Little's theorem states that under very general conditions L = λW, where L is the time average number in the system, W is the expected sojourn time in the system, and λ is the mean arrival rate to the system. For certain systems it is known that relations of the form E((L)l) = λ lE((W)l) are also true, where (L)l = L(L – 1)· ·· (L – l + 1). It is shown in this paper that closely analogous relations hold in closed, product-form queueing networks. Similar expressions relate Nji and Sji, where Nji is the total number of class j jobs at center i and Sji is the total sojourn time of a class j job at center i, when center i is a single-server, FCFS center. When center i is a c-server, FCFS center, Qji and Wji are related this way, where Qji is the number of class j jobs queued, but not in service at center i and Wji is the waiting time in queue of a class j job at center i. More remarkably, generalizations of these results to joint moments of queue lengths and sojourn times along overtake-free paths are shown to hold.


2000 ◽  
Vol 32 (01) ◽  
pp. 284-313 ◽  
Author(s):  
Xiuli Chao ◽  
Masakiyo Miyazawa

In this paper we extend the notion of quasi-reversibility and apply it to the study of queueing networks with instantaneous movements and signals. The signals treated here are considerably more general than those in the existing literature. The approach not only provides a unified view for queueing networks with tractable stationary distributions, it also enables us to find several new classes of product form queueing networks, including networks with positive and negative signals that instantly add or remove customers from a sequence of nodes, networks with batch arrivals, batch services and assembly-transfer features, and models with concurrent batch additions and batch deletions along a fixed or a random route of the network.


1989 ◽  
Vol 38 (3) ◽  
pp. 432-442 ◽  
Author(s):  
A.E. Conway ◽  
E. de Souza e Silva ◽  
S.S. Lavenberg

Sign in / Sign up

Export Citation Format

Share Document