Glivenko-cantelli type theorems for distance functions based on the modified empirical distribution function of M. kac and for the empirical process with random sample size in general

Author(s):  
Miklós Csörgő
1973 ◽  
Vol 73 (1) ◽  
pp. 139-144 ◽  
Author(s):  
Pranab Kumar Sen

AbstractBy the use of a semi-martingale property of the Kolmogorov supremum, the results of Pyke (6) on the weak convergence of the empirical process with random sample size are simplified and extended to the case of p(≥1)-dimensional stochastic vectors.


1989 ◽  
Vol 26 (04) ◽  
pp. 734-743 ◽  
Author(s):  
W. J. Voorn

A non-degenerate distribution function F is called maximum stable with random sample size if there exist positive integer random variables Nn, n = 1, 2, ···, with P(Nn = 1) less than 1 and tending to 1 as n → ∞ and such that F and the distribution function of the maximum value of Nn independent observations from F (and independent of Nn ) are of the same type for every index n. By proving the converse of an earlier result of the author, it is shown that the set of all maximum stable distribution functions with random sample size consists of all distribution functions F satisfying where c 2, c 3, · ·· are arbitrary non-negative constants with 0 < c2 + c3 + · ·· <∞, and all distribution functions G and H defined by F(x)= G(c + exp(x)) and F(x) = H(c – exp(–x)), –∞ < x <∞, where c is an arbitrary real constant.


1965 ◽  
Vol 8 (1) ◽  
pp. 93-103 ◽  
Author(s):  
Miklós Csörgo

Let F(x) be the continuous distribution function of a random variable X and Fn(x) be the empirical distribution function determined by a random sample X1, …, Xn taken on X. Using the method of Birnbaum and Tingey [1] we are going to derive the exact distributions of the random variablesand and where the indicated sup' s are taken over all x' s such that -∞ < x < xb and xa ≤ x < + ∞ with F(xb) = b, F(xa) = a in the first two cases and over all x' s so that Fn(x) ≤ b and a ≤ Fn(x) in the last two cases.


1989 ◽  
Vol 26 (4) ◽  
pp. 734-743 ◽  
Author(s):  
W. J. Voorn

A non-degenerate distribution function F is called maximum stable with random sample size if there exist positive integer random variables Nn, n = 1, 2, ···, with P(Nn = 1) less than 1 and tending to 1 as n → ∞ and such that F and the distribution function of the maximum value of Nn independent observations from F (and independent of Nn) are of the same type for every index n. By proving the converse of an earlier result of the author, it is shown that the set of all maximum stable distribution functions with random sample size consists of all distribution functions F satisfying where c2, c3, · ·· are arbitrary non-negative constants with 0 < c2 + c3 + · ·· <∞, and all distribution functions G and H defined by F(x)= G(c + exp(x)) and F(x) = H(c – exp(–x)), –∞ < x <∞, where c is an arbitrary real constant.


Sign in / Sign up

Export Citation Format

Share Document